[1]邱成羽,李兵,林世杰,等.放射多组学协同学习预测鼻咽癌自适应放疗触发机制[J].智能系统学报,2024,19(1):58-66.[doi:10.11992/tis.202304029]
 QIU Chengyu,LI Bing,LAM Saikit,et al.Radioactive multi-omics collaborative learning for adaptive radiation therapy eligibility prediction in nasopharyngeal carcinoma[J].CAAI Transactions on Intelligent Systems,2024,19(1):58-66.[doi:10.11992/tis.202304029]
点击复制

放射多组学协同学习预测鼻咽癌自适应放疗触发机制

参考文献/References:
[1] SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA:a cancer journal for clinicians, 2021, 71(3): 209–249.
[2] 梁锌, 杨剑, 高婷, 等. 中国鼻咽癌流行概况[J]. 中国肿瘤, 2016, 25(11): 835–840
LIANG Xin, YANG Jian, GAO Ting, et al. Nasopharynx cancer epidemiology in China[J]. China cancer, 2016, 25(11): 835–840
[3] CHEN Yupei, CHAN A T C, LE Q T, et al. Nasopharyngeal carcinoma[J]. Lancet, 2019, 394(10192): 64–80.
[4] LIU Yanxia, SHI Hongyu, HUANG Sijuan, et al. Early prediction of acute xerostomia during radiation therapy for nasopharyngeal cancer based on delta radiomics from CT images[J]. Quantitative imaging in medicine and surgery, 2019, 9(7): 1288–1302.
[5] 金哲, 张斌, 张璐, 等. 基于多参数MRI影像组学及临床特征的鼻咽癌远处转移可解释性机器学习预测模型[J]. 磁共振成像, 2022, 13(11): 22–29
JIN Zhe, ZHANG Bin, ZHANG Lu, et al. Prediction of distant metastasis in nasopharyngeal carcinoma by interpretable machine learning model based on multiparametric MRI radiomics and clinical factors[J]. Chinese journal of magnetic resonance imaging, 2022, 13(11): 22–29
[6] ZHANG Xingping, ZHANG Yanchun, ZHANG Guijuan, et al. Deep learning with radiomics for disease diagnosis and treatment: challenges and potential[J]. Frontiers in oncology, 2022, 12: 773840.
[7] MAYERHOEFER M E, MATERKA A, LANGS G, et al. Introduction to radiomics[J]. Journal of nuclear medicine: official publication, Society of Nuclear Medicine, 2020, 61(4): 488–495.
[8] HARDING-THEOBALD E, LOUISSAINT J, MARAJ B, et al. Systematic review: radiomics for the diagnosis and prognosis of hepatocellular carcinoma[J]. Alimentary pharmacology & therapeutics, 2021, 54(7): 890–901.
[9] AVANZO M, STANCANELLO J, EL NAQA I. Beyond imaging: the promise of radiomics[J]. Physica medica, 2017, 38: 122–139.
[10] ZHOU Lu, WEN Yuefeng, ZHANG Guoqian, et al. Machine learning-based multiomics prediction model for radiation pneumonitis[J]. Journal of oncology, 2023, 2023: 1–9.
[11] CAI C, LYU Wenbing, CHI F, et al. Prognostic generalization of multi-level CT-dose fusion dosiomics from primary tumor and lymph node in nasopharyngeal carcinoma[J]. Medical physics, 2023, 50(2): 922–934.
[12] CUI Sunan, TEN HAKEN R K, EL NAQA I. Integrating multiomics information in deep learning architectures for joint actuarial outcome prediction in non-small cell lung cancer patients after radiation therapy[J]. International journal of radiation oncology biology physics, 2021, 110(3): 893–904.
[13] TONG Li, WU Hang, WANG M D. Integrating multi-omics data by learning modality invariant representations for improved prediction of overall survival of cancer[J]. Methods, 2021, 189: 74–85.
[14] XU Chang, TAO Dacheng, XU Chao. A survey on multi-view learning[EB/OL]. (2013?04?20)[2023?03?24]. https://arxiv.org/abs/1304.5634.pdf.
[15] 包丹, 罗德红. 基于MR的影像组学在鼻咽癌中的研究进展[J]. 国际医学放射学杂志, 2020, 43(5): 560–564
BAO Dan, LUO Dehong. Research progress in MR-based radiomics of nasopharyngeal carcinoma[J]. International journal of medical radiology, 2020, 43(5): 560–564
[16] FANETTI G, AVANZO M, PIRRONE G, et al. PO-122 CT/PET based dosiomics and radiomics model predicts local control of nasopharyngeal carcinoma[J]. Radiotherapy and oncology, 2019, 132: 62–63.
[17] FANG Xiaozhao, XU Yong, LI Xuelong, et al. Regularized label relaxation linear regression[J]. IEEE transactions on neural networks and learning systems, 2018, 29(4): 1006–1018.
[18] WU Aiqian, LI Yongbao, QI Mengke, et al. Dosiomics improves prediction of locoregional recurrence for intensity modulated radiotherapy treated head and neck cancer cases[J]. Oral oncology, 2020, 104: 104625.
[19] LEE S H, HAN Peijin, HALES R K, et al. Multi-view radiomics and dosiomics analysis with machine learning for predicting acute-phase weight loss in lung cancer patients treated with radiotherapy[J]. Physics in medicine & biology, 2020, 65(19): 195015.
[20] GABRY? H S, BUETTNER F, STERZING F, et al. Design and selection of machine learning methods using radiomics and dosiomics for normal tissue complication probability modeling of xerostomia[J]. Frontiers in oncology, 2018, 8: 35.
[21] BUETTNER F, MIAH A B, GULLIFORD S L, et al. Novel approaches to improve the therapeutic index of head and neck radiotherapy: an analysis of data from the PARSPORT randomised phase III trial[J]. Radiotherapy and oncology, 2012, 103(1): 82–87.
[22] WU Binbin, RICCHETTI F, SANGUINETI G, et al. Patient geometry-driven information retrieval for IMRT treatment plan quality control[J]. Medical physics, 2009, 36(12): 5497–5505.
[23] LI Bing, ZHENG Xiaoli, GUO Wei, et al. Radiation pneumonitis prediction using multi- omics fusion based on a novel machine learning pipeline[J]. Human-centric computing and information sciences, 2022, 12: 49.
[24] ZHANG Zhong, QIN Zhili, LI Peiyan, et al. Multi-view discriminative learning via joint non-negative matrix factorization[C]//International Conference on Database Systems for Advanced Applications. Cham: Springer, 2018: 542?557.
[25] YANG Muli, DENG Cheng, NIE Feiping. Adaptive-weighting discriminative regression for multi-view classification[J]. Pattern recognition, 2019, 88: 236–245.
相似文献/References:
[1]毕晓君,张艳双.基于免疫算法的无线传感器网络路由算法[J].智能系统学报,2009,4(1):67.
 BI Xiao-jun,ZHANG Yan-shuang.A routing algorithm for wireless sensor networks based on an immune algorithm[J].CAAI Transactions on Intelligent Systems,2009,4():67.
[2]叶志飞,文益民,吕宝粮.不平衡分类问题研究综述[J].智能系统学报,2009,4(2):148.
 YE Zhi-fei,WEN Yi-min,LU Bao-liang.A survey of imbalanced pattern classification problems[J].CAAI Transactions on Intelligent Systems,2009,4():148.
[3]刘奕群,张 敏,马少平.基于非内容信息的网络关键资源有效定位[J].智能系统学报,2007,2(1):45.
 LIU Yi-qun,ZHANG Min,MA Shao-ping.Web key resource page selection based on non-content inf o rmation[J].CAAI Transactions on Intelligent Systems,2007,2():45.
[4]马世龙,眭跃飞,许 可.优先归纳逻辑程序的极限行为[J].智能系统学报,2007,2(4):9.
 MA Shi-long,SUI Yue-fei,XU Ke.Limit behavior of prioritized inductive logic programs[J].CAAI Transactions on Intelligent Systems,2007,2():9.
[5]姚伏天,钱沄涛.高斯过程及其在高光谱图像分类中的应用[J].智能系统学报,2011,6(5):396.
 YAO Futian,QIAN Yuntao.Gaussian process and its applications in hyperspectral image classification[J].CAAI Transactions on Intelligent Systems,2011,6():396.
[6]文益民,强保华,范志刚.概念漂移数据流分类研究综述[J].智能系统学报,2013,8(2):95.[doi:10.3969/j.issn.1673-4785.201208012]
 WEN Yimin,QIANG Baohua,FAN Zhigang.A survey of the classification of data streams with concept drift[J].CAAI Transactions on Intelligent Systems,2013,8():95.[doi:10.3969/j.issn.1673-4785.201208012]
[7]杨成东,邓廷权.综合属性选择和删除的属性约简方法[J].智能系统学报,2013,8(2):183.[doi:10.3969/j.issn.1673-4785.201209056]
 YANG Chengdong,DENG Tingquan.An approach to attribute reduction combining attribute selection and deletion[J].CAAI Transactions on Intelligent Systems,2013,8():183.[doi:10.3969/j.issn.1673-4785.201209056]
[8]胡小生,钟勇.基于加权聚类质心的SVM不平衡分类方法[J].智能系统学报,2013,8(3):261.
 HU Xiaosheng,ZHONG Yong.Support vector machine imbalanced data classification based on weighted clustering centroid[J].CAAI Transactions on Intelligent Systems,2013,8():261.
[9]丁科,谭营.GPU通用计算及其在计算智能领域的应用[J].智能系统学报,2015,10(1):1.[doi:10.3969/j.issn.1673-4785.201403072]
 DING Ke,TAN Ying.A review on general purpose computing on GPUs and its applications in computational intelligence[J].CAAI Transactions on Intelligent Systems,2015,10():1.[doi:10.3969/j.issn.1673-4785.201403072]
[10]孔庆超,毛文吉,张育浩.社交网站中用户评论行为预测[J].智能系统学报,2015,10(3):349.[doi:10.3969/j.issn.1673-4785.201403019]
 KONG Qingchao,MAO Wenji,ZHANG Yuhao.User comment behavior prediction in social networking sites[J].CAAI Transactions on Intelligent Systems,2015,10():349.[doi:10.3969/j.issn.1673-4785.201403019]

备注/Memo

收稿日期:2023-04-13。
基金项目:国家自然科学基金项目(82072019);深圳市科技创新委员会深圳市基础研究计划(JCYJ20210324130209023);深圳-香港-澳门科技计划(C类) (SGDX20201103095002019);江苏省自然科学基金项目(BK20201441);河南省医学科学技术研究省部共建项目(SBGJ202103038,SBGJ202102056);河南省重点研发与推广项目(科学技术研究) (222102310015);河南省自然科学基金(222300420575,232300420231);河南省科学技术研究项目(222102310322)
作者简介:邱成羽,硕士研究生,主要研究方向为智能医学工程。E-mail:1277294613@qq.com;张远鹏,博士,教授,2019届香江学者,江苏省人工智能协会不确定性人工智能专业委员会委员,IEEE会员,TCYB、TNNLS、TFS、SMCA、TCBB等权威期刊的审稿人和客座编委。主要研究方向为人工智能与模式识别相关(模糊聚类、TSK模糊系统、特征选择等)研究及其在医学上(脑电信号处理、多模态影像组学分析)的应用。主持国家自然科学基金项目2项、江苏省自然科学基金项目1项、江苏省博士后基金项目1项、南通市科技计划项目1项。发表学术论文30篇。E-mail:maxbirdzhang@ntu.edu.cn;蔡璟,教授、临床医学物理住院师,博士。任多家领域内顶尖杂志执行主编/高级副主编/副主编/编委,国际科研项目评审专家。主持参与科研项目50余项。发表学术论文130余篇,发表会议摘要和其他著作200多个。E-mail:jing.cai@polyu.edu.hk
通讯作者:蔡璟. E-mail:jing.cai@polyu.edu.hk

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com