[1]郭大伟,李景浩,陆军.三维点云配准的多尺度深度学习方法[J].智能系统学报,2024,19(4):817-826.[doi:10.11992/tis.202304007]
GUO Dawei,LI Jinghao,LU Jun.Multi-scale deep learning method for 3D point cloud registration[J].CAAI Transactions on Intelligent Systems,2024,19(4):817-826.[doi:10.11992/tis.202304007]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
19
期数:
2024年第4期
页码:
817-826
栏目:
学术论文—机器学习
出版日期:
2024-07-05
- Title:
-
Multi-scale deep learning method for 3D point cloud registration
- 作者:
-
郭大伟, 李景浩, 陆军
-
哈尔滨工程大学 智能科学与工程学院, 黑龙江 哈尔滨 150001
- Author(s):
-
GUO Dawei, LI Jinghao, LU Jun
-
College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China
-
- 关键词:
-
点云配准; 三维视觉; 特征提取; 特征融合; 深度学习; 兴趣点聚合; 多尺度特征; Transformer网络
- Keywords:
-
point cloud registration; 3D vision; feature extraction; feature fusion; deep learning; point of interest aggregation; multi-scale features; Transformer network
- 分类号:
-
TP391.4
- DOI:
-
10.11992/tis.202304007
- 摘要:
-
针对近几年三维视觉领域基于深度学习点云配准算法鲁棒性差和精度较差等问题,设计了一种基于深度学习的三维点云配准方法。首先抽取具有明显几何特征的点作为兴趣点,通过区域生长算法对兴趣点进行聚合,并基于多尺度分析方法进行特征提取以及特征融合。为进一步提取特征数据中包含的深层局部信息,使用多层感知机(multilayer perceptron,MLP)网络进行二次特征提取,并加入修改过的Transformer网络补充特征。设计了匹配矩阵生成及优化算法,并通过奇异值分解(singular value decomposition,SVD)计算得到变换矩阵。通过在ModelNet40数据集上进行比较实验,证明本文的配准算法远优于传统配准算法,并在配准精度和鲁棒性方面优于近几年流行的深度配准网络DCPNet和RPMNet。本文分析结果可为提高点云配准鲁棒性以及精度提供参考。
- Abstract:
-
In order to solve the problems of poor robustness and poor accuracy of the point cloud registration algorithm based on deep learning in the field of 3D vision in recent years, a 3D point cloud registration method based on deep learning is designed. Firstly, the points with obvious geometric features are extracted as points of interest, and the points of interest are aggregated by the regional growth algorithm, and feature extraction and feature fusion are carried out based on the multi-scale analysis method. In order to further extract the deep local information contained in the feature data, the multilayer perceptron(MLP) network is used for secondary feature extraction, and the modified Transformer network is added to supplement the features. The matching matrix generation and optimization algorithm is designed, and the transformation matrix is obtained by singular value decomposition(SVD) calculation. Through comparative experiments on the ModelNet40 dataset, it is proved that the registration algorithm in this paper is far superior to the traditional registration algorithm, and is better than the popular deep registration networks DCPNet and RPMNet in recent years in terms of registration accuracy and robustness. The analysis results in this paper provide a reference for improving the robustness and accuracy of point cloud registration.
更新日期/Last Update:
1900-01-01