[1]秦敏敏,刘立芳,齐小刚.面向维修资源分配调度的遗传-长鼻浣熊混合优化算法[J].智能系统学报,2023,18(6):1322-1335.[doi:10.11992/tis.202303035]
QIN Minmin,LIU Lifang,QI Xiaogang.Hybrid genetic long-nosed raccoon optimization algorithm for maintenance resource allocation and scheduling[J].CAAI Transactions on Intelligent Systems,2023,18(6):1322-1335.[doi:10.11992/tis.202303035]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
18
期数:
2023年第6期
页码:
1322-1335
栏目:
学术论文—人工智能基础
出版日期:
2023-11-05
- Title:
-
Hybrid genetic long-nosed raccoon optimization algorithm for maintenance resource allocation and scheduling
- 作者:
-
秦敏敏1, 刘立芳1, 齐小刚2,3
-
1. 西安电子科技大学 计算机科学与技术学院, 陕西 西安 710071;
2. 西安电子科技大学 数学与统计学院, 陕西 西安 710071;
3. 西安市网络建模与资源调度重点实验室, 陕西 西安 710071
- Author(s):
-
QIN Minmin1, LIU Lifang1, QI Xiaogang2,3
-
1. School of Computer Science and Technology, Xidian University, Xi’an 710071, China;
2. School of Mathematics and Statistics, Xidian University, Xi’an 710071, China;
3. Xi’an Key Laboratory of network modeling and resource scheduling, Xi’an 710071, China
-
- 关键词:
-
资源受限; 项目调度; 多模式; 资源配置; 分配调度; 动态发布; 多维修中心
- Keywords:
-
resource constraints; project scheduling; multimode; resource allocation; allocation scheduling; dynamic publishing; multiple maintenance centers
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.202303035
- 摘要:
-
鉴于传统的资源受限的项目调度问题(resource-constrained project scheduling problem,RCPSP)已经难以满足当下实际需求,对资源受限的项目调度问题进行扩展已是大势所趋,所以本文结合设备动态发布维修任务的特性,对原RCPSP问题进行抽象,加入了与设备相关的多模式的资源配置问题,从而建立了面向多维修中心的多模式的动态资源分配调度模型。为了更好地求解所提出的模型,本文提出了一种遗传-长鼻浣熊混合优化算法,该算法是在原长鼻浣熊优化算法的基础之上加入了遗传算法的选择、交叉以及变异算子,主要用于扩大搜索范围,从而跳出局部最优;为了进一步提高候选解的质量,还加入了贪婪算子的操作。通过对仿真实验结果的对比分析,发现不论是从收敛速度还是求解质量等方面,新提出的遗传-长鼻浣熊混合优化算法均以绝对的优势优于其他算法。
- Abstract:
-
Traditional resource-constrained project scheduling problems (RCPSPs) can hardly meet current practical needs. Hence, expanding the RCPSP is an inevitable trend. Therefore, this paper abstracts the original RCPSP problem based on the characteristics of dynamically releasing maintenance tasks for equipment, adding multimodal resource allocation issues related to equipment. Thus, a multimode dynamic resource allocation and scheduling model for multiple maintenance centers is established. This paper proposes a hybrid optimization algorithm combining genetic and long-nosed raccoon algorithms to solve the proposed model effectively. The algorithm is added with the selection, crossover, and mutation operators of the genetic algorithm based on the original coati optimization algorithm, which are mainly used to expand the search range, thereby jumping out of local optimization. Furthermore, greedy operator functions are added to further improve the quality of candidate solutions. Comparative analysis of the results of simulative experiments revealed that the newly proposed genetic long-nosed raccoon hybrid optimization algorithm is superior to other algorithms in terms of convergence speed and solution quality.
备注/Memo
收稿日期:2023-3-25。
作者简介:秦敏敏,硕士研究生,主要研究方向为维修保障的资源调度与算法优化;刘立芳,教授,博士,主要研究方向为数据处理与智能计算。发表学术论文40余篇;齐小刚,教授,博士生导师,主要研究方向为健康管理与故障诊断、资源调度与优化算法。指导大学生参加全国、国际大学生数学建模竞赛,曾5次获得国际一等奖,1次获得特等奖提名奖。曾获省部级科技进步二等奖、三等奖3项,省级优秀教学成果奖2项,申请专利80余项,登记软件著作权13项。发表学术论文150余篇
通讯作者:刘立芳.E-mail:lfliu@xidian.edu.cn
更新日期/Last Update:
1900-01-01