[1]刘光辉,张钰敏,孟月波,等.双分支跨级特征融合的自然场景文本检测[J].智能系统学报,2023,18(5):1079-1089.[doi:10.11992/tis.202303005]
 LIU Guanghui,ZHANG Yumin,MENG Yuebo,et al.Natural scene text detection based on double-branch cross-level feature fusion[J].CAAI Transactions on Intelligent Systems,2023,18(5):1079-1089.[doi:10.11992/tis.202303005]
点击复制

双分支跨级特征融合的自然场景文本检测

参考文献/References:
[1] 黄剑华, 唐降龙, 刘家锋, 等. 一种基于Homogeneity的文本检测新方法[J]. 智能系统学报, 2007, 2(1): 69-73
HUANG Jianhua, TANG Xianglong, LIU Jiafeng, et al. A new method for text detection based on Homogeneity[J]. CAAI Transactions on Intelligent Systems, 2007, 2(1): 69-73
[2] 吕国宁,高敏. 视觉感知式场景文字检测定位方法[J]. 智能系统学报, 2017, 12(4): 569
LYU Guoning, GAO Min. Scene text detection and localization scheme with visual perception mechanism[J]. CAAI transactions on intelligent systems, 2017, 12(4): 569
[3] TIAN Z, HUANG W, HE T, et al. Detecting text in natural image with connectionist text proposal network[C] //Computer Vision-ECCV 2016: 14th European Conferen -ce, Amsterdam, The Netherlands: Springer International Publishing, 2016: 56?72.
[4] SHI B, BAI X, BELONGIE S. Detecting oriented text in natural images by linking segments[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2550?2558.
[5] WANG Y, XIE H, ZHA Z J, et al. ContourNet: taking a further step toward accurate arbitrary-shaped scene text detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 11753?11762.
[6] WANG W, XIE E, LI X, et al. Shape robust text detection with progressive scale expansion network[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 9336?9345.
[7] WANG W, XIE E, SONG X, et al. Efficient and accurate arbitrary-shaped text detection with pixel aggregation network[C]//IEEE/CVF International Conference on Computer Vision. Long Beach: IEEE, 2019: 8439?8448.
[8] LIAO M, WAN Z, YAO C, et al. Real-time scene text detection with differentiable binarization[C]//Proceedings of the AAAI conference on artificial intelligence. Washington, D.C.: AAAI, 2020, 34(07): 11474?11481.
[9] WU Y, ZHANG W, WAN S. CE-text: a context-aware and embedded text detector in natural scene images[J]. Pattern recognition letters, 2022, 159: 77-83.
[10] 孟月波, 石德旺, 刘光辉, 等. 多维度卷积融合的密集不规则文本检测[J]. 光学精密工程, 2021, 29(9): 2210-2221
MENG Yuebo, SHI Dewang, LIU Guanghui, et al. Dense irregular text detection based on multi-dimensional convolution fusion[J]. Optics and precision engineering, 2021, 29(9): 2210-2221
[11] YANG C, CHEN M, YUAN Y, et al. BiP-net: bidirectional perspective strategy based arbitrary-shaped text detection network[C]//ICASSP 2022 IEEE International Conference on Acoustics, Speech and Signal Processing. New York: IEEE, 2022: 2255-2259.
[12] CHEN H, CHEN P, QIU Y, et al. FARNet: fragmented affinity reasoning network of text instances for arbitrary shape text detection[J]. IET image processing, 2023, 17(6): 1959-1977.
[13] ZHU Y, CHEN J, LIANG L, et al. Fourier contour embedding for arbitrary-shaped text detection[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 3123-3131.
[14] YOU Y, LEI Y, ZHANG Z, et al. Arbitrary-shaped text detection with B-spline curve network[J]. Sensors, 2023, 23(5): 2418.
[15] ZHANG S X, ZHU X, CHEN L, et al. Arbitrary shape text detection via segmentation with probability maps[J]. IEEE transactions on pattern analysis and machine intelligence, 2022, 45(3): 2736-2750.
[16] TANG Q, FENG X, ZHANG X. A spatial feature adaptive network for text detection[J]. Multimedia tools and applications, 2022, 81(11): 15285-15302.
[17] 赵文清, 杨盼盼. 双向特征融合与注意力机制结合的目标检测[J]. 智能系统学报, 2021, 16(6): 1098-1105
ZHAO Wenqing, YANG Panpan. Target detection based on bidirectional feature fusion and an attention mechanism[J]. CAAI transactions on intelligent systems, 2021, 16(6): 1098-1105
[18] ZHOU X, YAO C, WEN H, et al. EAST: An efficient and accurate scene text detector[C]//IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2642?2651.
[19] ZHANG C, LIANG B, HUANG Z, et al. Look more than once: an accurate detector for text of arbitrary shapes[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 10552-10561
[20] LONG S, RUAN J, ZHANG We, et al. TextSnake: A flexible representation for detecting text of arbitrary shapes[C]//Proceedings of the European Conference on Computer Vision. Munich: Springer, 2018: 20-36.
[21] XIE E, ZANG Y, SHAO S, et al. Scene text detection with supervised pyramid context network[C]// Proceedings of the AAAI conference on artificial intelligence. Honolulu: AAAI, 2019, 33(1): 9038-9045.
[22] BAEK Y, LEE B, HAN D, et al. Character region awareness for text detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 9365-9374.
[23] WANG Hao, LU Pu, ZHANG Hui, et al. All You need is boundary: toward arbitrary-shaped text spotting[C]//Proceedings of the AAAI Conference on Artificial Intelligence. New York: AAAI, 2020, 34(7): 12160-12167.
[24] ZHANG S X, ZHU X, HOU J B, et al. Deep relational reasoning graph network for arbitrary shape text detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2020: 9699?9708.
[25] LI J, LIN Y, LIU R, et al. RSCA: real-time segmentation-based context-aware scene text detection[C] //Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 2349-2358.
[26] WAN Q, JI H, SHEN L. Self-attention based text knowledge mining for text detection[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognitio. Nashville: IEEE,?2021: 5983?5992.
[27] ZHU Y, DU J. TextMountain: accurate scene text detection via instance segmentation[J]. Pattern recognition, 2021, 110: 107336.
[28] WANG F, CHEN Y, WU F, et al. TextRay: contour-based geometric modeling for arbitrary-shaped scene text detection[C]//Proceedings of the 28th ACM International Conference on Multimedia. New York: ACM, 2020: 111-119.
[29] BAEK Y, SHIN S, BAEK J, et al. Character region attention for text spotting[C]//Computer Vision-ECCV 2020: 16th European Conference. Glasgow: Springer International Publishing, 2020: 504-521.
[30] LIU Y, CHEN H, SHEN C, et al. ABCNet: real-time scene text spotting with adaptive bezier-curve network[C] //Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2020: 9809-9818.
[31] YE J, CHEN Z, LIU J, et al. TextFuseNet: Scene Text Detection with Richer Fused Features[C]//International Joint Conference on Artificial Intelligence. Yokohama: IJCAI, 2021: 512?518.
[32] BU?TA M, PATEL Y, MATAS J. E2E-MLT - an unconstrained end-to-end method for multi-language scene text[C]//Computer Vision-ACCV 2018 Workshops: 14th Asian Conference on Computer Vision. Perth: Springer International Publishing, 2019: 127-143.
[33] DENG D, LIU H, LI X, et al. PixelLink: detecting scene text via instance segmentation[C]// Proceedings of the AAAI conference on artificial intelligence. New Orleans: AAAI, 2018, 32(1): 6773-6780.
[34] LIU X, LIANG D, YAN S, et al. FOTS: fast oriented text spotting with a unified network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 5676-5685.
[35] XING L, TIAN Z, HUANG W, et al. Convolutional character networks[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Long Beach: IEEE, 2019: 9126-9136.
相似文献/References:
[1]黄剑华,唐降龙,刘家锋,等.一种基于Homogeneity的文本检测新方法[J].智能系统学报,2007,2(1):69.
 HUANG Jian-hua,TANG Xiang-long,LIU Jia-feng,et al.A new method for text detection based on Homogeneity[J].CAAI Transactions on Intelligent Systems,2007,2():69.
[2]张铭泉,张泽恩,曹锦纲,等.结合Segformer与增强特征金字塔的文本检测方法[J].智能系统学报,2024,19(5):1111.[doi:10.11992/tis.202301013]
 ZHANG Mingquan,ZHANG Zeen,CAO Jingang,et al.Text detection method combining Segformer with an enhanced feature pyramid[J].CAAI Transactions on Intelligent Systems,2024,19():1111.[doi:10.11992/tis.202301013]

备注/Memo

收稿日期:2023-3-2。
基金项目:国家自然科学基金项目(52278125);陕西省重点研发计划(2021SF-429).
作者简介:刘光辉,副教授,主要研究方向为计算机视觉理解、建筑智能化技术。近年来主持/参与多项国家自然科学基金项目、陕西省重点研发计划项目、陕西省基础研究项目,获陕西高等学校科学技术优秀成果奖;张钰敏,硕士研究生,主要研究方向为图像处理、场景文本检测与识别;孟月波,教授,博士生导师,博士,主要研究方向为机器视觉信息处理与分析、建筑智能化
通讯作者:刘光辉.E-mail:guanghuil@163.com

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com