[1]王延春秋,葛泉波,刘华平.石板材表面缺陷检测的无监督学习方法[J].智能系统学报,2023,18(6):1344-1351.[doi:10.11992/tis.202212006]
 WANG Yanchunqiu,GE Quanbo,LIU Huaping.Unsupervised learning method for surface defect detection of slate materials[J].CAAI Transactions on Intelligent Systems,2023,18(6):1344-1351.[doi:10.11992/tis.202212006]
点击复制

石板材表面缺陷检测的无监督学习方法

参考文献/References:
[1] 马立修. 激光切割及其在切割石板材中的应用研究[J]. 应用激光, 2008, 28(4): 292–294
MA Lixiu. The laser cutting and its application in cutting the stone plate[J]. Applied laser, 2008, 28(4): 292–294
[2] SAKURADA M, YAIRI T. Anomaly detection using autoencoders with nonlinear dimensionality reduction[C]//Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis. Gold Coast: ACM, 2014: 4-11.
[3] 杨文元. 多标记学习自编码网络无监督维数约简[J]. 智能系统学报, 2018, 13(5): 808–817
YANG Wenyuan. Unsupervised dimensionality reduction of multi-label learning via autoencoder networks[J]. CAAI transactions on intelligent systems, 2018, 13(5): 808–817
[4] NGUYEN D T, LOU Z, KLAR M, et al. Anomaly detection with multiple-hypotheses predictions[EB/OL]. (2018-10-31)[2022-12-06]. https://arxiv.org/abs/1810.13292.
[5] AKCAY S, ATAPOUR-ABARGHOUEI A, BRECKON T P. GANomaly: semi-supervised anomaly detection via adversarial training[C]//Asian Conference on Computer Vision. Cham: Springer, 2019: 622-637.
[6] PIDHORSKYI S, ALMOHSEN R, ADJEROH D A, et al. Generative probabilistic novelty detection with adversarial autoencoders[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. Montréal: ACM, 2018: 6823-6834.
[7] SABOKROU M, KHALOOEI M, FATHY M, et al. Adversarially learned one-class classifier for novelty detection[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 3379-3388.
[8] YI Jihun, YOON S. Patch SVDD: patch-level SVDD for anomaly detection and segmentation[C]//Asian Conference on Computer Vision. Cham: Springer, 2021: 375-390.
[9] RUDOLPH M, WANDT B, ROSENHAHN B. Same same but DifferNet: semi-supervised defect detection with normalizing flows[C]//2021 IEEE Winter Conference on Applications of Computer Vision. Waikoloa: IEEE, 2021: 1906-1915.
[10] BERGMAN L, COHEN N, HOSHEN Y. Deep nearest neighbor anomaly detection[EB/OL]. (2020-02-10) [2022-12-06]. https://arxiv.org/abs/2002.10445.
[11] COHEN N, HOSHEN Y. Sub-image anomaly detection with deep pyramid correspondences[EB/OL]. (2020- 05-02) [2022-12-06]. https://arxiv.org/abs/2005.02357.
[12] DENG Jia, DONG Wei, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami: IEEE, 2009: 248-255.
[13] RUFF L, VANDERMEULEN R, GOERNITZ N, et al. Deep one-class classification[C]//35th International Conference on Machine Learning. Stockholm: PMLR, 2018, 80: 4393-4402.
[14] BERGMAN L, HOSHEN Y. Classification-based anomaly detection for general data[EB/OL]. (2020-05-10) [2022-12-06]. https://www.researchgate.net/publication/341175574_Classification-Based_Anomaly_Detection_for_General_Data.
[15] NAPOLETANO P, PICCOLI F, SCHETTINI R. Anomaly detection in nanofibrous materials by CNN-based self-similarity[J]. Sensors, 2018, 18(2): 209.
[16] BERGMANN P, FAUSER M, SATTLEGGER D, et al. Uninformed students: student-teacher anomaly detection with discriminative latent embeddings[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 4182-4191.
[17] LEE K, LEE K, LEE H, et al. A simple unified framework for detecting out-of-distribution samples and adversarial attacks[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. Montréal: ACM, 2018: 7167-7177.
[18] DEFARD T, SETKOV A, LOESCH A, et al. PaDiM: A patch distribution modeling framework for anomaly detection and localization[C]//International Conference on Pattern Recognition. Cham: Springer, 2021: 475-489.
[19] ROTH K, PEMULA L, ZEPEDA J, et al. Towards total recall in industrial anomaly detection[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 14298-14308.
[20] JOHNSON W B, LINDENSTRAUSS J. Extensions of lipschitz mappings into a Hilbert space[J]. Contemporary mathematics, 1984, 26(1): 189–206.
[21] CHOROMANSKI K, ROWLAND M, WELLER A. The unreasonable effectiveness of structured random orthogonal embeddings[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: ACM, 2017: 218-227.
[22] LEZAMA J, QIU Qiang, MUSé P, et al. OLE: orthogonal low-rank embedding, A plug and play geometric loss for deep learning[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 8109-8118.
[23] SALEHI M, SADJADI N, BASELIZADEH S, et al. Multiresolution knowledge distillation for anomaly detection[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 14897-14907.
[24] MAHALANOBIS P C. On the generalised distance in statistics[EB/OL]. (2016-08-15) [2022-12-06]. http://bayes.acs.unt.edu:8083/BayesContent/class/Jon/MiscDocs/1936_Mahalanobis.pdf.
[25] KIM J H, KIM D H, YI S, et al. Semi-orthogonal embedding for efficient unsupervised anomaly segmentation[EB/OL]. (2021-05-31)[2022-12-06]. https://arxiv.org/abs/2105.14737.pdf
[26] MEZZADRI F. How to generate random matrices from the classical compact groups[J]. Notices of the AMS, 2006, 54(5): 592–604.
[27] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
[28] GUDOVSKIY D, ISHIZAKA S, KOZUKA K. CFLOW-AD: real-time unsupervised anomaly detection with localization via conditional normalizing flows[C]//2022 IEEE/CVF Winter Conference on Applications of Computer Vision. Waikoloa: IEEE, 2022: 1819-1828.

备注/Memo

收稿日期:2022-12-7。
作者简介:王延春秋,硕士研究生,主要研究方向为无监督学习、图像缺陷检测;葛泉波,教授,博士生导师,主要研究方向为智能电网大数据分析、人机混合系统智能评估、无人系统协同优化理论与方法、工程信息融合理论与方法。主持国家自然科学基金重点项目1项,发表学术论文100余篇;刘华平,教授,博士生导师,中国人工智能学会理事、中国人工智能学会认知系统与信息处理专业委员会秘书长,吴文俊人工智能科学技术奖获得者,主要研究方向为机器人感知、学习与控制、多模态信息融合。主持国家自然科学基金重点项目2项,发表 学术论文340余篇
通讯作者:刘华平.E-mail:hpliu@tsinghua.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com