[1]韦知辛,方勇纯.融合人类认知模式的自主发育网络及其在手势识别的应用[J].智能系统学报,2023,18(1):144-152.[doi:10.11992/tis.202212002]
WEI Zhixin,FANG Yongchun.Autonomous developmental network incorporating human cognitive modes and its application in gesture recognition[J].CAAI Transactions on Intelligent Systems,2023,18(1):144-152.[doi:10.11992/tis.202212002]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
18
期数:
2023年第1期
页码:
144-152
栏目:
人工智能院长论坛
出版日期:
2023-01-05
- Title:
-
Autonomous developmental network incorporating human cognitive modes and its application in gesture recognition
- 作者:
-
韦知辛1, 方勇纯1,2
-
1. 南开大学 机器人与信息自动化研究所,天津 300071;
2. 南开大学 人工智能学院,天津 300071
- Author(s):
-
WEI Zhixin1, FANG Yongchun1,2
-
1. Institute of Robotics and Automatic Information System, Nankai University, Tianjin 300071, China;
2. College of Artifical Intelligence, Nankai University, Tianjin 300071, China
-
- 关键词:
-
自主发育网络; 手势识别; 人类认知模式; top-k 竞争机制; 神经元认知能力反馈; 突触重调整; 增量分级回归树算法; 叶成分分析算法
- Keywords:
-
autonomous developmental network; gesture recognition; human cognitive modes; top-k competition mechanism; neuron cognitive ability feedback; synaptic readjustment; incremental hierarchical discriminant regression; lobe component analysis
- 分类号:
-
TP183
- DOI:
-
10.11992/tis.202212002
- 摘要:
-
自主发育算法在智能机器人等领域有着广阔的应用前景,考虑到现有方法的局限性,本文提出了一种融合人类认知模式的自主发育神经网络,并将该方法应用于手势识别任务中。通过动态改变神经元预响应值计算过程中的人为指导部分来模拟人类的学习方式,提出了基于动态 k值的top-k 竞争机制,并模拟人脑对知识的接收和记忆功能实现优胜神经元突触权重的更新,最后基于神经元认知能力反馈进行突触重调整。对比实验结果表明,与原有方法相比,经该文改进后的自主发育网络在手势识别任务中具有更好的学习效果和更高的识别率。
- Abstract:
-
The autonomous development algorithm has broad application prospect in the intelligent robots and other fields. Considering the limitation of existing methods, this paper proposes an autonomous development neural network integrating human cognitive mode, and applies the method to gesture recognition tasks. Specifically, the proposed method dynamically changes the human-guided part for the computation of neuron pre-response values to simulate the way humans learn. In addition, we propose a top-k competition mechanism based on the dynamic k value. Besides, in the method, human brain’s ability of receiving and memorizing knowledge is simulated to update the synaptic weights of the winning neurons, and neuron cognitive ability is utilized as the feedback for synaptic readjustment. Comparative experimental results show that, compared with the original method, the improved autonomic development network in this paper has better learning effect and higher recognition rate in gesture recognition task.
备注/Memo
收稿日期:2022-12-02。
基金项目:国家自然科学基金面上项目(61873132);先进计算与关键软件海河实验室项目(22HHXCJC00003).
作者简介:韦知辛,硕士研究生,主要研究方向为机器视觉及发育神经网络;方勇纯,教授,博士生导师,南开大学人工智能学院院长,主要研究方向为机器人视觉控制、欠驱动吊运系统控制、仿生机器人运动控制和微纳米操作。主持国家重点研发计划项目、国家自然科学基金重点项目、"十二五"国家技术支撑计划课题、国家基金仪器专项等国家级项目10多项。获吴文俊人工智能自然科学奖一等奖、天津市专利奖金奖、天津市自然科学一等奖、高等教育教学成果一等奖等多项奖励,发表学术论文100余篇
通讯作者:方勇纯.E-mail:fangyc@nankai.edu.cn
更新日期/Last Update:
1900-01-01