[1]李祥宇,隋璘,熊伟丽.基于自注意力机制与卷积ONLSTM网络的软测量算法[J].智能系统学报,2023,18(5):957-965.[doi:10.11992/tis.202211037]
LI Xiangyu,SUI Lin,XIONG Weili.Soft sensor algorithm based on self-attention mechanism and convolutional ONLSTM network[J].CAAI Transactions on Intelligent Systems,2023,18(5):957-965.[doi:10.11992/tis.202211037]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
18
期数:
2023年第5期
页码:
957-965
栏目:
学术论文—机器学习
出版日期:
2023-09-05
- Title:
-
Soft sensor algorithm based on self-attention mechanism and convolutional ONLSTM network
- 作者:
-
李祥宇1, 隋璘1, 熊伟丽1,2
-
1. 江南大学 物联网工程学院, 江苏 无锡 214122;
2. 江南大学 轻工过程先进控制教育部重点实验室, 江苏 无锡 214122
- Author(s):
-
LI Xiangyu1, SUI Lin1, XIONG Weili1,2
-
1. School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China;
2. Key Laboratory of Advanced Process Control for Industry(Ministry of Education), Jiangnan University, Wuxi 214122, China
-
- 关键词:
-
自注意力机制; 有序神经元长短时记忆网络; 软测量; 青霉素发酵; 特征提取; 卷积; 冗余信息; 深度学习
- Keywords:
-
self-attention mechanism; ordered neurons long short-term memory; soft sensor; penicillin fermentation; feature extraction; convolution; redundant information; deep learning
- 分类号:
-
TP274
- DOI:
-
10.11992/tis.202211037
- 摘要:
-
针对实际工业过程的非线性和动态性特点,并考虑过程变量中存在的冗余信息,提出一种带自注意力机制的卷积有序神经元长短时记忆网络(ordered neurons long short-term memory, ONLSTM)多层时序预测模型。首先利用卷积神经网络降低局部特征维度,对输入变量进行局部特征提取,并通过构建层级重要性指标对长短时记忆网络(long short-term memory, LSTM)隐藏层神经元进行特定排序,以辨识层级结构信息,提高网络模型的重要信息判断能力;其次将自注意力机制引入ONLSTM网络,根据各输入变量之间内部相关性,自适应地为其分配不同的注意力权重,以提高模型预测性能;最后将模型应用于青霉素发酵过程的产物浓度预测,并与其他先进网络模型进行对比,验证了模型的有效性。
- Abstract:
-
According to the nonlinear and dynamic characteristics of actual industrial processes and considering the redundant information in process variables, this paper presents a multilayer time-series prediction model of convolutional ordered neurons long short-term memory network (ONLSTM) with a self-attention mechanism. First, the convolutional neural network is used to reduce the dimensions of local features, extract the specific local features of the input variables, and rank the neurons in the LSTM hidden layer specifically by constructing the hierarchical importance index to identify the hierarchical structure information and improve the ability of networks to judge important information of the network model. Second, the self-attention mechanism is introduced into the ONLSTM network. This mechanism dynamically assigns different attention weights to the input variables according to their internal correlation to improve the prediction performance of the model. Finally, the model is applied to predict product concentration in the penicillin fermentation process, following which it is compared with other advanced network models to verify the effectiveness of the proposed model.
备注/Memo
收稿日期:2022-11-15。
基金项目:国家自然科学基金项目(61773182);国家重点研发计划子课题(2018YFC1603705-03).
作者简介:李祥宇,硕士研究生,主要研究方向为复杂工业过程建模;隋璘,博士研究生, 主要研究方向为机器学习、软测量建模;熊伟丽,教授,博士生导师,主要研究方向为基于数据挖掘、机器学习和大数据解析的复杂工业过程建模、控制及优化,智能软测量技术与应用,以及面向酿造过程、污水处理过程的智能自动化系统设计与开发。主持国家自然科学基金面上项目、国家自然科学基金青年项目、中国博士后基金项目、江苏省产学研前瞻性研究项目等省部级以上项目近10项。作为骨干人员参与完成国家重点研发计划课题、国家863计划等7项。获得江苏省科学技术二等奖1项、中国商业联合会科技进步一等奖、中石化自动化应用协会科技进步一等奖共3项。已授权发明专利27项,其中国际发明专利4项,以第一/责任作者发表学术论文近百篇
通讯作者:熊伟丽.E-mail:greenpre@163.com
更新日期/Last Update:
1900-01-01