[1]刘嘉轩,胡非易,张辉,等.上下文空间与实例信息的皮肤镜图像自监督分类[J].智能系统学报,2023,18(4):783-792.[doi:10.11992/tis.202211010]
LIU Jiaxuan,HU Feiyi,ZHANG Hui,et al.Dermoscopic images classification based on context and instance-level feature of self-supervised learning[J].CAAI Transactions on Intelligent Systems,2023,18(4):783-792.[doi:10.11992/tis.202211010]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
18
期数:
2023年第4期
页码:
783-792
栏目:
学术论文—智能系统
出版日期:
2023-07-15
- Title:
-
Dermoscopic images classification based on context and instance-level feature of self-supervised learning
- 作者:
-
刘嘉轩1, 胡非易2, 张辉3, 张金洲1, 李玲1
-
1. 长沙理工大学 电气与信息工程学院, 湖南 长沙 410114;
2. 湖南大学 电气与信息工程学院, 湖南 长沙 410000;
3. 湖南大学 机器人学院, 湖南 长沙 410012
- Author(s):
-
LIU Jiaxuan1, HU Feiyi2, ZHANG Hui3, ZHANG Jinzhou1, LI Ling1
-
1. School of Electrical and Information Engineering, Changsha University of Science and Technology, Changsha 410114, China;
2. School of Electrical and Information Engineering, Hunan University, Changsha 410000, China;
3. School of Robotics, Hunan University, Changsha 410012, China
-
- 关键词:
-
皮肤病诊断; 自监督学习; 特征提取; 图像分类; 迁移学习; 卷积神经网络; 医学图像处理; 辅助诊断
- Keywords:
-
skin disease diagnosis; self-supervised learning; feature extraction; image classification; transfer learning; convolutional neural network; medical image processing; auxiliary diagnosis
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.202211010
- 摘要:
-
针对基于深度学习的皮肤疾病检测方法受限于皮肤镜图像标注难度大、成本高、耗时耗力等问题,本文提出了一种针对皮肤镜图像的自监督学习方法,利用无标注的皮肤镜图像来提高皮肤疾病分类准确率。根据皮肤镜图像空间结构相似度高、信息单一的特点,使用基于旋转预测自监督代理任务,通过模型预测图像旋转的角度,约束模型对图像病变区域的关注,学习上下文空间特征;同时使用个体判别任务,利用正负样本对比学习,获得皮肤镜图像实例信息,为皮肤镜图像的分类提供全局分类信息指导;融合上下文空间特征与实例语义信息得到初始的皮肤疾病检测模型。实验结果表明:本文所提的自监督学习方法,从无标记的皮肤镜样本挖掘出重要信息,更有效地关注皮肤镜图像病变区域,通过融合皮肤镜图像特征信息,使分类结果更加准确。
- Abstract:
-
The skin disease detection method based on deep learning is limited by the difficulty of annotations, high cost, time consuming and labor-intensive labeling of dermoscopy images. This paper proposes a self-supervised learning method for dermoscopy images, which uses unmarked dermoscopy images to improve the classification accuracy of skin diseases. According to the characteristics of high similarity and single information of the spatial structure of dermoscopic images, a rotation prediction pretext task is designed to predict the rotation angle of the image through the model, so as to constrain the model’s attention to pathological areas of the image, and learn the context feature. At the same time, the paper presents an instance discrimination task and comparative learning of positive and negative instances to obtain the instance information of dermatoscope images, which provides guidance for global classification information in the classification of dermatoscope images. The initial skin disease detection model is obtained by fusing context features and instance semantic information. The experimental results show that the self-supervised learning method proposed in this paper can mine important information from unmarked dermoscopy samples, pay more attention to the lesion area of dermoscopy images, and make the classification results more accurate by fusing the characteristic information of dermoscopy images.
备注/Memo
收稿日期:2022-11-10。
基金项目:国家重大研究计划重点支持项目(92148204);科技创新2030“新一代人工智能”重大项目(2021ZD0114503);国家自然科学基金项目 (61971071,62027810,62133005);湖南省杰出青年科学基金项目 (2021JJ10025) ;湖南省重点研发计划(2021GK4011,2022GK2011);长沙市科技重大专项 (kh2003026);机器人学国家重点实验室联合开放基金项目(2021-KF-22-17);中国高校产学研创新基金项目(2020HYA06006).
作者简介:刘嘉轩,硕士研究生,主要研究方向为医学图像分析和计算机视觉;胡非易,硕士研究生,主要研究方向为图像识别、医学图像分析;张辉,教授,博士生导师,主要研究方向为计算机视觉。获省部级科学技术奖励一等奖8项,获2022年湖南省第十三届教学成果特等奖等,主持科技创新2030—“新一代人工智能”重大项目、国家自然科学基金共融机器人重大研究计划重点项目、国家重点研发计划子课题、国家科技支撑计划项目子课题等20余项,授权发明专利38项。发表学术论文50余篇。
通讯作者:张辉.E-mail:zhanghuihby@126.com
更新日期/Last Update:
1900-01-01