[1]季友昌,袁伟伟,毛善斌,等.不平衡小样本基于局部域对抗适应网络的发动机振动预测模型[J].智能系统学报,2023,18(5):1005-1016.[doi:10.11992/tis.202210030]
 JI Youchang,YUAN Weiwei,MAO Shanbin,et al.Partial domain adversarial adaptation networks for imbalanced small samples in aeroengine vibration prediction[J].CAAI Transactions on Intelligent Systems,2023,18(5):1005-1016.[doi:10.11992/tis.202210030]
点击复制

不平衡小样本基于局部域对抗适应网络的发动机振动预测模型

参考文献/References:
[1] B?YüKDIPI ?, TüCCAR G, SOYHAN H S. Experimental investigation and artificial neural networks (ANNs) based prediction of engine vibration of a diesel engine fueled with sunflower biodiesel-NH3 mixtures[J]. Fuel, 2021, 304: 121462.
[2] ELSAID A, EL JAMIY F, HIGGINS J, et al. Optimizing long short-term memory recurrent neural networks using ant colony optimization to predict turbine engine vibration[J]. Applied soft computing, 2018, 73: 969-991.
[3] 赵凯琳, 靳小龙, 王元卓. 小样本学习研究综述[J]. 软件学报, 2021, 32(2): 349-369
ZHAO Kailin, JIN Xiaolong, WANG Yuanzhuo. Survey on few-shot learning[J]. Journal of software, 2021, 32(2): 349-369
[4] LU Wang, CHEN Yiqiang, WANG Jindong, et al. Cross-domain activity recognition via substructural optimal transport[J]. Neurocomputing, 2021, 454: 65-75.
[5] TIAN Lei, TANG Yongqiang, HU Liangchen, et al. Domain adaptation by class centroid matching and local manifold self-learning[J]. IEEE transactions on image processing, 2020, 29: 9703-9718.
[6] TASKESEN B, YUE M C, BLANCHET J, et al. Sequential domain adaptation by synthesizing distributionally robust experts[C]//International Conference on Machine Learning. [S.l.]: PMLR, 2021: 10162?10172.
[7] 朱应钊. 异构迁移学习研究综述[J]. 电信科学, 2020, 36(3): 100-110
ZHU Yingzhao. Review on heterogeneous transfer learning[J]. Telecommunications science, 2020, 36(3): 100-110
[8] 李荣军, 郭秀焱, 杨静远. 面向鲁棒口语理解的声学组块混淆语言模型微调算法[J]. 智能系统学报, 2023, 18(1): 131-137
LI Rongjun, GUO Xiuyan, YANG Jingyuan. A fine-tuning algorithm for acoustic text chunk confusion language model orienting to understand robust spoken language[J]. CAAI transactions on intelligent systems, 2023, 18(1): 131-137
[9] LIU Bingyan, CAI Yifeng, GUO Yao, et al. TransTailor: pruning the pre-trained model for improved transfer learning[EB/OL]. (2021?03?02)[2021?06?06]. https://doi.org/10.48550/arXiv.2103.01542.
[10] 孔伶旭, 吴海锋, 曾玉, 等. 迁移学习特征提取的rs-fMRI早期轻度认知障碍分类[J]. 智能系统学报, 2021, 16(4): 662-672
KONG Lingxu, WU Haifeng, ZENG Yu, et al. Transfer learning-based feature extraction method for the classification of rs-fMRI early mild cognitive impairment[J]. CAAI transactions on intelligent systems, 2021, 16(4): 662-672
[11] OUYANG L, KEY A. maximum mean discrepancy for generalization in the presence of distribution and missingness shift[C]//NeurIPS 2021 Workshop on Distribution Shifts: Connecting Methods and Applications. [S.l.]: IEEE, 2021.
[12] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144.
[13] BALDEON C M G, LAI-YUEN S K. C-MADA: unsupervised cross-modality adversarial domain adaptation framework for medical image segmentation[C]//SPIE Medical Imaging Proc SPIE 12032, medical imaging 2022: image processing. San Diego: [s.n.], 2022: 971?978.
[14] 钱亚冠, 马骏, 何念念, 等. 面向边缘智能的两阶段对抗知识迁移方法[J]. 软件学报, 2022, 33(12): 4504-4516
QIAN Yaguan, MA Jun, HE Niannian, et al. Two-stage adversarial knowledge transfer for edge intelligence[J]. Journal of software, 2022, 33(12): 4504-4516
[15] SUN Mingfei, MA Xiaojuan. Adversarial imitation learning from incomplete demonstrations[C]//Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2019: 3513.
[16] ROBBIANO L, UR RAHMAN M R, GALASSO F, et al. Adversarial branch architecture search for unsupervised domain adaptation[C]//2022 IEEE/CVF Winter Conference on Applications of Computer Vision. Waikoloa: IEEE, 2022: 1008?1018.
[17] DUAN Lixin, XU Dong, TSANG I W. Learning with augmented features for heterogeneous domain adaptation[C]//Proceedings of the 29th International Coference on International Conference on Machine Learning. New York: ACM, 2012: 667?674.
[18] SUKHIJA S, KRISHNAN N C. Supervised heterogeneous feature transfer via random forests[J]. Artificial intelligence, 2019, 268: 30-53.
[19] FEUZ K D, COOK D J. Transfer learning across feature-rich heterogeneous feature spaces via feature-space remapping (FSR)[J]. ACM transactions on intelligent systems and technology, 2015, 6(1): 1-27.
[20] DEMIRK?RAN F, ?AY?R A, üNAL U, et al. An ensemble of pre-trained transformer models for imbalanced multiclass malware classification[J]. Computers & security, 2022, 121: 102846.
[21] ZHANG Jianguo, BUI T, YOON S, et al. Few-shot intent detection via contrastive pre-training and fine-tuning[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2021: 1906?1912.
[22] HONG Jin, YU S C H, CHEN Weitian. Unsupervised domain adaptation for cross-modality liver segmentation via joint adversarial learning and self-learning[J]. Applied soft computing, 2022, 121: 108729.
[23] ADLER J, LUNZ S. Banach wasserstein gan[J]. Advances in neural information processing systems, 2018, 31.
[24] GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein GANs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 5769?5779.
[25] LONG Mingsheng, WANG Jianmin, DING Guiguang, et al. Transfer feature learning with joint distribution adaptation[C]//2013 IEEE International Conference on Computer Vision. Sydney: IEEE, 2014: 2200?2207.
[26] SUN Baochen, FENG Jiashi, SAENKO K. Correlation alignment for unsupervised domain adaptation[M]//Csurka G. Domain Adaptation in Computer Vision Applications. Cham: Springer, 2017: 153?171.
[27] GONG Lina, JIANG Shujuan, JIANG Li. Conditional domain adversarial adaptation for heterogeneous defect prediction[J]. IEEE access, 2020, 8: 150738-150749.
相似文献/References:
[1]胡小生,温菊屏,钟勇.动态平衡采样的不平衡数据集成分类方法[J].智能系统学报,2016,11(2):257.[doi:10.11992/tis.201507015]
 HU Xiaosheng,WEN Juping,ZHONG Yong.Imbalanced data ensemble classification using dynamic balance sampling[J].CAAI Transactions on Intelligent Systems,2016,11():257.[doi:10.11992/tis.201507015]
[2]普事业,刘三阳,白艺光.网络拓扑特征的不平衡数据分类[J].智能系统学报,2019,14(5):889.[doi:10.11992/tis.201812014]
 PU Shiye,LIU Sanyang,BAI Yiguang.Imbalanced data classification of network topology characteristics[J].CAAI Transactions on Intelligent Systems,2019,14():889.[doi:10.11992/tis.201812014]
[3]莫宏伟,傅智杰.基于迁移学习的无监督跨域人脸表情识别[J].智能系统学报,2021,16(3):397.[doi:10.11992/tis.202008034]
 MO Hongwei,FU Zhijie.Unsupervised cross-domain expression recognition based on transfer learning[J].CAAI Transactions on Intelligent Systems,2021,16():397.[doi:10.11992/tis.202008034]
[4]李庆勇,何军,张春晓.基于分类差异与信息熵对抗的无监督域适应算法[J].智能系统学报,2021,16(6):999.[doi:10.11992/tis.202010020]
 LI Qingyong,HE Jun,ZHANG Chunxiao.Unsupervised domain adaptation algorithm based on classification discrepancy and information entropy[J].CAAI Transactions on Intelligent Systems,2021,16():999.[doi:10.11992/tis.202010020]
[5]周晶雨,王士同.对不平衡目标域的多源在线迁移学习[J].智能系统学报,2022,17(2):248.[doi:10.11992/tis.202012019]
 ZHOU Jingyu,WANG Shitong.Multi-source online transfer learning for imbalanced target domains[J].CAAI Transactions on Intelligent Systems,2022,17():248.[doi:10.11992/tis.202012019]
[6]蔡鸿顺,张琼敏,龙颖.面向阿尔茨海默症辅助诊断的多尺度域适应网络[J].智能系统学报,2023,18(5):1090.[doi:10.11992/tis.202205050]
 CAI Hongshun,ZHANG Qiongmin,LONG Ying.Multiscale domain adaptation network for the auxiliary diagnosis of Alzheimer’s disease[J].CAAI Transactions on Intelligent Systems,2023,18():1090.[doi:10.11992/tis.202205050]

备注/Memo

收稿日期:2022-10-24。
基金项目:基础科研项目(JCKY2020204C009).
作者简介:季友昌,硕士研究生,主要研究方向为机器学习;袁伟伟,教授,博士,主要研究方向为机器学习、人机协同。主持完成国家自然科学基金2项,参与重点研发计划2项。发表学术论文100余篇;关东海,副教授,博士,主要研究方向为数据挖掘、知识推理。主持完成国家自然科学基金2项,参与重点研发计划2项、重大科技专项1项。发表学术论文100余篇
通讯作者:关东海.E-mail:dhguan@nuaa.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com