[1]徐华畅,许倩,赵钰琳,等.基于AEViT与先验知识的胶质瘤IDH1突变状态预测[J].智能系统学报,2024,19(4):952-960.[doi:10.11992/tis.202209055]
XU Huachang,XU Qian,ZHAO Yulin,et al.Prediction of glioma IDH1 mutation status based on AEViT and prior knowledge[J].CAAI Transactions on Intelligent Systems,2024,19(4):952-960.[doi:10.11992/tis.202209055]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
19
期数:
2024年第4期
页码:
952-960
栏目:
学术论文—智能系统
出版日期:
2024-07-05
- Title:
-
Prediction of glioma IDH1 mutation status based on AEViT and prior knowledge
- 作者:
-
徐华畅1, 许倩2, 赵钰琳1, 梁峰宁1, 徐凯2, 朱红1
-
1. 徐州医科大学 医学信息与工程学院, 江苏 徐州 221000;
2. 徐州医科大学附属医院 医学影像科, 江苏 徐州 221000
- Author(s):
-
XU Huachang1, XU Qian2, ZHAO Yulin1, LIANG Fengning1, XU Kai2, ZHU Hong1
-
1. School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou 221000, China;
2. Medical Imaging Department, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
-
- 关键词:
-
胶质瘤; 异柠檬酸脱氢酶1; K-Means聚类算法; 伪标签; Auto-Encoder; vision Transformer; 果蝇优化算法; 先验知识
- Keywords:
-
glioma; IDH1; K-Means clustering algorithm; pseudo-label; Auto-Encoder; vision Transformer; fruit fly optimization algorithm; priori knowledge
- 分类号:
-
TP18
- DOI:
-
10.11992/tis.202209055
- 摘要:
-
针对目前预测胶质瘤异柠檬酸脱氢酶1(isocitrate dehydrogenase1, IDH1)突变状态存在的数据不足、准确率较低等问题,提出一种基于AEViT(auto-encoder vision Transformer)与先验知识的胶质瘤IDH1突变状态预测方法。首先使用改进的K-Means聚类算法为无IDH1突变状态标签的胶质瘤磁共振成像(magnetic resonance imaging,MRI)数据标注伪标签,并采用ViT(vision Transformer)网络对伪标签进行修正,得到最终的胶质瘤IDH1突变状态。为避免不准确的伪标签数据影响模型精度,采用果蝇优化算法为伪标签数据赋予最优权重;然后提出基于Auto-Encoder和ViT的分类模型AEViT,利用Auto-Encoder提取胶质瘤MRI特征;再将特征输入ViT中对胶质瘤IDH1突变状态进行分类;最后将基于胶质瘤位置信息的先验知识加入模型,达到99.01%的预测准确率。结果表明该方法优于其他现有模型,能够实现胶质瘤数据扩增和术前无创、准确地预测胶质瘤IDH1突变状态,从而辅助诊疗过程。
- Abstract:
-
Aiming at the problems of insufficient data and low accuracy in predicting the mutation status of brain glioma isocitrate dehydrogenase1 (IDH1), a prediction method for IDH1 mutation status of brain glioma is proposed based on auto-encoder vision Transformer (AEViT) and priori knowledge. Firstly, an improved K-Means clustering algorithm was used to label the pseudo-labels for MRI data of glioma without IDH1 status labels, and vision Transformer (ViT) network was used to modify the pseudo labels to obtain the final glioma IDH1 mutation status. In order to avoid inaccurate pseudo-label data that affect accuracy of the model, the fruit fly optimization algorithm was used to assign the optimal weight to the pseudo-label data. Secondly, a classification model AEViT based on Auto-Encoder and Vision Transformer was proposed, and Auto-Encoder was used to extract MRI features of glioma, and then the features were input into ViT to classify the IDH1 mutation status of glioma. Finally, the prior knowledge based on glioma location information was added to the model, which achieved a prediction accuracy of 99.01%. The experimental results show that this method is superior to other existing models, and can realize glioma data augmentation and non-invasive and accurate preoperative prediction of glioma IDH1 mutation status, thereby assisting the diagnosis and treatment process.
备注/Memo
收稿日期:2022-09-27。
基金项目:江苏省卫生健康委医学科研项目(Z2020032);徐州市重点研发计划项目(KC22117);徐州市卫生健康委员会青年医学科技创新项目(XWKYHT20210586).
作者简介:徐华畅,硕士,主要研究方向为人工智能、深度学习、智能医学图像处理。E-mail:xuhuachang@xzhmu.edu.cn;许倩,副主任医师,博士,江苏省医学会脑卒中分会第一届青年委员会委员,主要研究方向为中枢神经系统疾病的影像诊断。E-mail:xuqianxz@126.com;朱红,教授,博士,主要研究方向为人工智能、深度学习、模式识别、智能医学图像处理。主持或参与教学、科研课题10余项,发表学术论文40余篇。E-mail:zhuhong@xzhmu.edu.cn
通讯作者:朱红. E-mail:zhuhong@xzhmu.edu.cn
更新日期/Last Update:
1900-01-01