[1]徐华畅,许倩,赵钰琳,等.基于AEViT与先验知识的胶质瘤IDH1突变状态预测[J].智能系统学报,2024,19(4):952-960.[doi:10.11992/tis.202209055]
 XU Huachang,XU Qian,ZHAO Yulin,et al.Prediction of glioma IDH1 mutation status based on AEViT and prior knowledge[J].CAAI Transactions on Intelligent Systems,2024,19(4):952-960.[doi:10.11992/tis.202209055]
点击复制

基于AEViT与先验知识的胶质瘤IDH1突变状态预测

参考文献/References:
[1] FU Jie, SINGHRAO K, ZHONG Xinran, et al. An automatic deep learning-based workflow for glioblastoma survival prediction using preoperative multimodal MR images: a feasibility study[J]. Advances in radiation oncology, 2021, 6(5): 100746.
[2] ZHANG Maolei, HUANG Nunu, YANG Xuesong, et al. A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis[J]. Oncogene, 2018, 37(13): 1805–1814.
[3] LOUIS D N, PERRY A, REIFENBERGER G, et al. The 2016 world health organization classification of tumors of the central nervous system: a summary[J]. Acta neuropathologica, 2016, 131(6): 803–820.
[4] CHEN Xi, YAN Yuanliang, ZHOU Jianhua, et al. Clinical prognostic value of isocitrate dehydrogenase mutation, O-6-methylguanine-DNA methyltransferase promoter methylation, and 1p19q co-deletion in glioma patients[J]. Annals of translational medicine, 2019, 7(20): 541.
[5] LOUIS D N, ARIE P, PIETER W, et al. The 2021 WHO classification of tumors of the central nervous system: a summary[J]. Neuro-oncology, 2021, 23(8): 1231–1251.
[6] MILLER J J, SHIH H A, ANDRONESI O C, et al. Isocitrate dehydrogenase-mutant glioma: evolving clinical and therapeutic implications[J]. Cancer, 2017, 123(23): 4535–4546.
[7] 李锐, 马林. IDH基因突变与胶质瘤相关性的研究进展[J]. 中国医学影像学杂志, 2020, 28(2): 142–145
LI Rui, MA Lin. Research progress on the correlation between IDH gene mutation and glioma[J]. China journal of medical imaging, 2020, 28(2): 142–145
[8] WANG Shuo, SHI Jingyun, YE Zhaoxiang, et al. Predicting EGFR mutation status in lung adenocarcinoma on computed tomography image using deep learning[J]. European respiratory journal, 2019, 53(3): 1800986.
[9] CHOI K S, CHOI S H, JEONG B. Prediction of IDH genotype in gliomas with dynamic susceptibility contrast perfusion MR imaging using an explainable recurrent neural network[J]. Neuro-oncology, 2019, 21(9): 1197–1209.
[10] BANGALORE Y C, SHAH B R, VEJDANI-JAHROMI M, et al. A novel fully automated MRI-based deep-learning method for classification of IDH mutation status in brain gliomas[J]. Neuro-oncology, 2020, 22(3): 402–411.
[11] CHOI Y S, BAE S, CHANG J H, et al. Fully automated hybrid approach to predict the IDH mutation status of gliomas via deep learning and radiomics[J]. Neuro-oncology, 2021, 23(2): 304–313.
[12] SAFDAR M F, ALKOBAISI S S, ZAHRA F T. A comparative analysis of data augmentation approaches for magnetic resonance imaging (MRI) scan images of brain tumor[J]. Acta informatica medica, 2020, 28(1): 29–36.
[13] LIU Sidong, SHAH Z, SAV A, et al. Isocitrate dehydrogenase (IDH) status prediction in histopathology images of gliomas using deep learning[J]. Scientific reports, 2020, 10(1): 7733.
[14] LI Qingyun, YU Zhibin, WANG Yubo, et al. TumorGAN: a multi-modal data augmentation framework for brain tumor segmentation[J]. Sensors, 2020, 20(15): 4203.
[15] LEE D. Pseudo-Label : the simple and efficient Semi-Supervised learning method for deep neural networks[C]//ICML 2013 Workshop : Challenges in Representation Learning. Atlanta: ACM, 2013, 3(2): 896.
[16] XIE Qizhe, LUONG M T, HOVY E, et al. Self-training with noisy student improves imageNet classification[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 10684-10695.
[17] CHEN Dongdong, YUAN Lu, LIAO Jing, et al. Explicit filterbank learning for neural image style transfer and image processing[J]. IEEE transactions on pattern analysis and machine intelligence, 2021, 43(7): 2373–2387.
[18] VASWANI Ashish, SHAZEER Noam, PARMAR Niki, et al. Attention is all you need[EB/OL]. (2017-06-12)[2022-07-21]. https://arxiv.org/abs/1706.03762.
[19] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[EB/OL]. (2020-10-22)[2022-07-21]. https://arxiv.org/abs/2010.11929.
[20] 徐华畅, 许倩, 赵钰琳, 等. 基于改进EfficientNetV2的脑胶质瘤IDH1突变状态预测方法[J]. 山东大学学报(理学版), 2023, 58(7): 60–66
XU Huachang, XU Qian, ZHAO Yulin, et al. Prediction method of IDH1 mutation status of glioma based on improved EfficientNetV2[J]. Journal of Shandong University (science edition), 2023, 58(7): 60–66
[21] ZHANG Lifei, FRIED D V, FAVE X J, et al. Ibex: an open infrastructure software platform to facilitate collaborative work in radiomics[J]. Medical physics, 2015, 42(3): 1341–1353.
[22] 刘光宇, 黄懿, 曹禹, 等. 基于灰度共生矩阵的图像纹理特征提取研究[J]. 科技风, 2021(12): 61–64
LIU Guangyu, HUANG Yi, CAO Yu, et al. Research on image texture feature extraction based on grayscale cooccurrence matrix[J]. Technology wind, 2021(12): 61–64
[23] 王铭, 田为中, 张继, 等. 基于TIRM序列的游程矩阵纹理特征联合ADC值预测乳腺癌ki-67表达水平[J]. 放射学实践, 2021, 36(12): 1520–1525
WANG Ming, TIAN Weizhong, ZHANG Ji, et al. Prediction of ki-67 expression level in breast cancer based on run-length matrix texture feature combined with ADC value based on TIRM sequence[J]. Radiology practice, 2021, 36(12): 1520–1525
[24] PAN Wen-tsao. A new fruit fly optimization algorithm: taking the financial distress model as an example[J]. Knowledge-based systems, 2012, 26: 69–74.
[25] 陈璟, 虞继敏. 基于果蝇—广义回归神经网络优化的wsn节点定位算法[J]. 南京师大学报(自然科学版), 2017, 40(2): 31–38
CHEN Jing, YU Jimin. A wsn node localization algorithm based on drosophila-generalized regression neural network optimization[J]. Journal of Nanjing Normal University (natural science edition), 2017, 40(2): 31–38
[26] 彭启伟, 罗旺, 冯敏, 等. 改进二维otsu法和果蝇算法结合的图像分割方法[J]. 计算机应用, 2017, 37(S2): 193–197
PENG Qiwei, LUO Wang, FENG Min, et al. Improved image segmentation method by combining two-dimensional otsu method and fruit fly algorithm[J]. Computer applications, 2017, 37(S2): 193–197
[27] ZHU Hong, HE Hanzhi, XU Jinhui, et al. Medical image segmentation using fruit fly optimization and density peaks clustering[J]. Computational and mathematical methods in medicine, 2018, 2018: 1–11.
[28] WIJNENGA M, VOORT S, FRENCH P J, et al. Differences in spatial distribution between WHO 2016 low-grade glioma molecular subgroups[J]. Neuro-oncology advances, 2019, 1(1): z1.
[29] SONODA Y, SHIBAHARA I, KAWAGUCHI T, et al. Association between molecular alterations and tumor location and MRI characteristics in anaplastic gliomas[J]. Brain tumor pathology, 2015, 32(2): 99–104.
[30] 徐芊芊, 许倩, 徐华畅, 等. 基于CnViT的胶质瘤IDH1突变状态智能预测方法[J]. 山东大学学报(工学版), 2023, 53(2): 127–134
XU Qianqian, XU Qian, XU Huachang, et al. Intelligent prediction of glioma IDH1 mutation status based on CnViT[J]. Journal of Shandong University (engineering edition), 2023, 53(2): 127–134

备注/Memo

收稿日期:2022-09-27。
基金项目:江苏省卫生健康委医学科研项目(Z2020032);徐州市重点研发计划项目(KC22117);徐州市卫生健康委员会青年医学科技创新项目(XWKYHT20210586).
作者简介:徐华畅,硕士,主要研究方向为人工智能、深度学习、智能医学图像处理。E-mail:xuhuachang@xzhmu.edu.cn;许倩,副主任医师,博士,江苏省医学会脑卒中分会第一届青年委员会委员,主要研究方向为中枢神经系统疾病的影像诊断。E-mail:xuqianxz@126.com;朱红,教授,博士,主要研究方向为人工智能、深度学习、模式识别、智能医学图像处理。主持或参与教学、科研课题10余项,发表学术论文40余篇。E-mail:zhuhong@xzhmu.edu.cn
通讯作者:朱红. E-mail:zhuhong@xzhmu.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com