[1]于志刚,成思源,杨雪荣,等.融合可拓学与在线评论挖掘的产品改进需求识别研究[J].智能系统学报,2023,18(5):1047-1059.[doi:10.11992/tis.202208052]
YU Zhigang,CHENG Siyuan,YANG Xuerong,et al.Product improvement demand identification incorporating topology and online comment mining[J].CAAI Transactions on Intelligent Systems,2023,18(5):1047-1059.[doi:10.11992/tis.202208052]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
18
期数:
2023年第5期
页码:
1047-1059
栏目:
学术论文—机器学习
出版日期:
2023-09-05
- Title:
-
Product improvement demand identification incorporating topology and online comment mining
- 作者:
-
于志刚, 成思源, 杨雪荣, 谢通
-
广东工业大学 机电工程学院, 广东 广州 510006
- Author(s):
-
YU Zhigang, CHENG Siyuan, YANG Xuerong, XIE Tong
-
School of Electromechanics Engineering, Guangdong University of Technology, Guangzhou 510006, China
-
- 关键词:
-
可拓学; 在线评论; 物元模型; 事元模型; 情感倾向点互信息算法; 相关网; 蕴含系; 需求识别
- Keywords:
-
topology; online comment; matter-element model; affair-element model; emotion inclination pointwise mutual information algorithm; correlative network; implication system; demand identification
- 分类号:
-
TP18
- DOI:
-
10.11992/tis.202208052
- 摘要:
-
利用形式化、条理化的手段从在线评论当中挖掘并理清不同类别的产品改进需求是产品改进中亟待解决的问题,考虑到产品设计信息的多层次、多特征性,提出一种基于基元模型的在线评论产品设计信息分层表示及识别产品改进需求的可拓分析方法。利用PYLDA-vis交互式可视化库从在线评论中提取产品要素,将产品要素划分为实体?功能?属性3个层次,并采用物元模型进行分层表达;结合情感倾向点互信息算法计算各个层次用户观点的评价值,借助事元模型对评价值较低的对象特征进行用户需求表达;利用相关网分析方法确定缺陷物元之间的关联关系,蕴含系分析方法找出产品改进需求的实现途径。以一款养生壶的在线评论为例,通过对在线评论的挖掘找到用户对该产品的改进需求,并识别出实现需求的途径。融合可拓学与在线评论挖掘的产品改进需求识别方法可实现用户需求的分层表达,形式化、条理化地理清产品改进设计信息,为识别产品改进途径提供科学依据和有效方法。
- Abstract:
-
Formal and organized mining and clarifying of different categories of product improvement demands from online comments are necessary for the product improvement process. On considering the multilevel and multifeature nature of product design information, a topological analysis method based on a matter-element model used for hierarchical representation of online review product design information and identification of product improvement demands was proposed. PYLDAvis interactive visualization library was used to extract product elements from online comments, and the product elements were then divided into three levels, namely entity, function, and attribute. In addition, the matter-element model was used for hierarchical expression. The emotion inclination pointwise mutual information algorithm was combined to calculate the evaluation value of user opinions at all levels, and an affair–element model was used to express the user’s demand for the object features with low evaluation value. The correlation network analysis method was used to determine the relationship between defective matter elements, and the implication system analysis method was used to determine the realization of the product improvement demand. The case study took the online reviews of a health pot as an example, the user’s improvement demands for the product were found by mining online reviews, and means to achieve the demands were identified. A product improvement demand identification method incorporating topology and online comment mining can realize the hierarchical expression of user demands and clarify product improvement design information in a formalized and organized manner, providing a scientific basis and effective methods for identifying the improvement paths of products.
备注/Memo
收稿日期:2022-8-31。
基金项目:广东省研究生教育创新计划项目(2021JGXM043);广东省科技计划项目(2014A040402004).
作者简介:于志刚,硕士研究生,主要研究方向为可拓创新方法、数据挖掘;成思源,教授,博士,主要研究方向为技术创新方法、专利挖掘、逆向工程技术。主持并完成国家自然科学基金项目1项、广东省自然科学基金项目2项、广东省科技计划项目4项。获国家级教学成果二等奖1项、广东省教学成果一等奖3项,获得发明专利授权20余项。出版著作8部,发表学术论文70余篇;杨雪荣,副教授,博士,主要研究方向为机器视觉、逆向工程技术、TRIZ理论及应用。主持并完成国家自然科学基金项目1项、广东省自然科学基金项目1项、广东省科技计划项目2项。获广东省教学成果一等奖1项,获发明专利授权10余项。出版 著作5部,发表学术论文40余篇
通讯作者:成思源.E-mail:imdesign@gdut.edu.cn
更新日期/Last Update:
1900-01-01