[1]陈容珊,高淑萍,齐小刚.注意力机制和图卷积神经网络引导的谱聚类方法[J].智能系统学报,2023,18(5):936-944.[doi:10.11992/tis.202208041]
 CHEN Rongshan,GAO Shuping,QI Xiaogang.A spectral clustering based on GCNs and attention mechanism[J].CAAI Transactions on Intelligent Systems,2023,18(5):936-944.[doi:10.11992/tis.202208041]
点击复制

注意力机制和图卷积神经网络引导的谱聚类方法

参考文献/References:
[1] SHI Na, LIU Xumin, GUAN Yong. Research on k-means clustering algorithm: an improved k-means clustering algorithm[C]//2010 Third International Symposium on Intelligent Information Technology and Security Informatics. Jian: IEEE, 2010: 63?67.
[2] FU Chuanyi, CHEN Huandong, XING Jieqing. Spectral clustering and its research progress[C]//2011 Seventh International Conference on Computational Intelligence and Security: IEEE, 2012: 1367?1369.
[3] AGARWAL P, ALAM M A, BISWAS R. A hierarchical clustering algorithm for categorical attributes[C]//2010 Second International Conference on Computer Engineering and Applications. Bali: IEEE, 2010: 365?368.
[4] STUDER L, WALLAU J, INGOLD R, et al. Effects of graph pooling layers on classification with graph neural networks[C]//2020 7th Swiss Conference on Data Science. Luzern: IEEE, 2020: 57?58.
[5] GAMA F, ISUFI E, LEUS G, et al. Graphs, convolutions, and neural networks: from graph filters to graph neural networks[C]//IEEE Signal Processing Magazine. [S.l.]: IEEE, 2020: 128?138.
[6] KHAN A, SOHAIL A, ZAHOORA U, et al. A survey of the recent architectures of deep convolutional neural networks[J]. Artificial intelligence review, 2020, 53(8): 5455-5516.
[7] BOULEMNADJEL A, HACHOUF F. An improved algorithm for subspace clustering applied to image segmentation[C]//2012 16th International Conference on Information Visualisation. Montpellier: IEEE, 2012: 297?301.
[8] XIA Zhile, LI Junmin, LI Jiangrong. Passivity-based resilient adaptive control for fuzzy stochastic delay systems with Markovian switching[J]. Journal of the franklin institute, 2014, 351(7): 3818-3836.
[9] YUAN Gonglin, XUE Bing, ZHANG Mengjie. A graph-based approach to automatic convolutional neural network construction for image classification[C]//2020 35th International Conference on Image and Vision Computing New Zealand. Wellington: IEEE, 2020: 1?6.
[10] WU Zonghan, PAN Shirui, CHEN Fengwen, et al. A comprehensive survey on graph neural networks[J]. IEEE transactions on neural networks and learning systems, 2021, 32(1): 4-24.
[11] LI Yang, ZHANG Jiangzhou, NIE Mingyu, et al. Hessian-regularized spectral clustering for behavior recognition[C]//2020 International Conference on Intelligent Computing and Human-Computer Interaction. Sanya: IEEE, 2021: 156?159.
[12] GAO Jianliang, GAO Jun, YING Xiaoting, et al. Higher-order interaction goes neural: a substructure assembling graph attention network for graph classification[J]. IEEE transactions on knowledge and data engineering, 2023, 35(2): 1594-1608.
[13] LI Qiuyan, SHANG Yanlei, QIAO Xiuquan, et al. Heterogeneous dynamic graph attention network[C]//2020 IEEE International Conference on Knowledge Graph (ICKG). Nanjing: IEEE, 2020: 404?411.
[14] PENG Xi, FENG Jiashi, ZHOU J T, et al. Deep subspace clustering[J]. IEEE transactions on neural networks and learning systems, 2020, 31(12): 5509-5521.
[15] XU Xiaoliang, GAO Tong, WANG Yuxiang, et al. Event temporal relation extraction with attention mechanism and graph neural network[J]. Tsinghua science and technology, 2021, 27(1): 79-90.
[16] KIM M, KIM T, KIM D. Spatio-temporal slowfast self-attention network for action recognition[C]//2020 IEEE International Conference on Image Processing. Abu Dhabi: IEEE, 2020: 2206?2210.
[17] ZHANG Xuming, SUN Genyun, JIA Xiuping, et al. Spectral-spatial self-attention networks for hyperspectral image classification[J]. IEEE transactions on geoscience and remote sensing, 2022, 60: 1-15.
[18] GU Ruijun, WANG Jiacai. An improved spectral clustering algorithm based on neighbour adaptive scale[C]//2009 International Conference on Business Intelligence and Financial Engineering. Beijing: IEEE, 2009: 233?236.
[19] NGO M, MAI An, BUI T. On an improvement of Graph Convolutional Network in semi-supervised learning[C]//2020 7th NAFOSTED Conference on Information and Computer Science (NICS). Ho Chi Minh City: IEEE, 2021: 114?117.
[20] RUIZ L, GAMA F, RIBEIRO A. Graph neural networks: architectures, stability, and transferability[J]. Proceedings of the IEEE, 2021, 109(5): 660-682.
[21] PENG Hongrui. Graph convolutional networks: an analysis of method and applications in different fields and systems[C]//2020 International Conference on Communications, Information System and Computer Engineering (CISCE). Kuala Lumpur: IEEE, 2020: 153?157.
[22] CAO Jing, XU Yi, SONG Xuening. First-order meta-learning in node classification with graph convolutional network[C]//2021 4th International Conference on Artificial Intelligence and Big Data. Chengdu: IEEE, 2021: 443?447.
[23] XIAO Yi, CHEN Siying, WANG Hao, et al. HSGACN: hyperspectral image classification algorithm based on graph convolutional network[C]//2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. Brussels: IEEE, 2021: 3677?3680.
[24] CAI Chengtao, GUO Dongning. CNN-self-attention-DNN architecture for mandarin recognition[C]//2020 Chinese Control and Decision Conference. Hefei: IEEE, 2020: 1190?1194.
[25] UEDA T, OKADA M, MORI N, et al. A method to estimate request sentences using LSTM with self-attention mechanism[C]//2019 8th International Congress on Advanced Applied Informatics. Toyama: IEEE, 2020: 7?10.
[26] HU Bin, GUO Kehua, WANG Xiaokang, et al. RRL-GAT: graph attention network-driven multilabel image robust representation learning[J]. IEEE Internet of Things journal, 2022, 9(12): 9167-9178.
[27] TIAN Long, DU Qian, KOPRIVA I, et al. Spatial-spectral based multi-view low-rank sparse sbuspace clustering for hyperspectral imagery[C]//IEEE International Geoscience and Remote Sensing Symposium. Valencia: IEEE, 2018: 8488?8491.
[28] LI He, ZHANG Shiyu, SU Liangcai, et al. GraphSANet: a graph neural network and self attention based approach for spatial temporal prediction in sensor network[C]//2020 IEEE International Conference on Big Data. Atlanta: IEEE, 2021: 5756?5758.
[29] ZHANG Jintao, XU Quan. Attention-aware heterogeneous graph neural network[J]. Big data mining and analytics, 2021, 4(4): 233-241.
[30] BERIKOV V. Autoencoder-based low-rank spectral ensemble clustering of biological data[C]//2020 Cognitive Sciences, Genomics and Bioinformatics. Novosibirsk: IEEE, 2020: 43?46.
[31] SHANTHAMALLU U S, THIAGARAJAN J J, SPANIAS A. A regularized attention mechanism for graph attention networks[C]//2020 IEEE International Conference on Acoustics, Speech and Signal Processing. Barcelona: IEEE, 2020: 3372?3376.
[32] CAO Meng, MA Xiying, ZHU Kai, et al. Heterogeneous information network embedding with convolutional graph attention networks[C]//2020 International Joint Conference on Neural Networks. Glasgow: IEEE, 2020: 1?8.
[33] 张铭泉, 周辉, 曹锦纲. 基于注意力机制的双BERT有向情感文本分类研究[J]. 智能系统学报, 2022, 17(6): 1220-1227
ZHANG Mingquan, ZHOU Hui, CAO Jingang. Dual BERT directed sentiment text classification based on attention mechanism[J]. CAAI transactions on intelligent systems, 2022, 17(6): 1220-1227
[34] HUANG Shuning, OTA K, DONG Mianxiong, et al. MultiSpectralNet: spectral clustering using deep neural network for multi-view data[J]. IEEE transactions on computational social systems, 2019, 6(4): 749-760.
[35] GüZEL K, KUR?UN O. Improving spectral clustering using path-based connectivity[C]//2015 23nd Signal Processing and Communications Applications Conference. Malatya: IEEE, 2015: 2110?2113.
[36] 于润羽, 李雅文, 李昂. 融合领域特征的科技学术会议语义相似性计算方法[J]. 智能系统学报, 2022, 17(4): 737-743
YU Runyu, LI Yawen, LI Ang. Semantic similarity computing for scientific and technological conferences[J]. CAAI transactions on intelligent systems, 2022, 17(4): 737-743
[37] 马甜甜, 杨长春, 严鑫杰, 等. 融合知识图谱和轻量级图卷积网络推荐系统的研究[J]. 智能系统学报, 2022, 17(4): 721-727
MA Tiantian, YANG Changchun, YAN Xinjie, et al. Research on the fusion of knowledge graph and lightweight graph convolutional network recommendation system[J]. CAAI transactions on intelligent systems, 2022, 17(4): 721-727
[38] LI Hongmin, YE Xiucai, IMAKURA A, et al. Ensemble learning for spectral clustering[C]//2020 IEEE International Conference on Data Mining. Sorrento: IEEE, 2021: 1094?1099.
[39] BIANCHI F M, GRATTAROLA D, ALIPPI C. Mincut pooling in graph neural networks[EB/OL]. (2020?12?29)[2022?01?01]. https://arxiv.org/abs/1907.00481v2.
[40] 杨梦茵, 陈俊芬, 翟俊海. 非对称卷积编码器的聚类算法[J]. 智能系统学报, 2022, 17(5): 900-907
YANG Mengyin, CHEN Junfen, ZHAI Junhai. A clustering method based on the asymmetric convolutional autoencoder[J]. CAAI transactions on intelligent systems, 2022, 17(5): 900-907
[41] SANDFELDER D, VIJAYAN P, HAMILTON W L. Ego-GNNs: exploiting ego structures in graph neural networks[C]//2021 IEEE International Conference on Acoustics, Speech and Signal Processing. Toronto: IEEE, 2021: 8523?8527.
[42] LU Runkun, LIU Jianwei, ZUO Xin. Attentive multi-view deep subspace clustering net[J]. Neurocomputing, 2021, 435: 186-196.
[43] PENG Zhihao, LIU Hui, JIA Yuheng, et al. Deep attention-guided graph clustering with dual self-supervision[J]. IEEE transactions on circuits and systems for video technology, 2022: 1.
[44] DONG Huihui, MA Wenping, JIAO Licheng, et al. A multiscale self-attention deep clustering for change detection in SAR images[J]. IEEE transactions on geoscience and remote sensing, 2022, 60: 1-16.
[45] MIN Erxue, GUO Xifeng, LIU Qiang, et al. A survey of clustering with deep learning: from the perspective of network architecture[J]. IEEE access, 2018, 6: 39501-39514.
[46] XU K, HU WEIHUA, LESKOVEC J, et al. How powerful are graph neural networks? [EB/OL]. (2019?02?22)[2022?01?01]. https://arxiv.org/abs/1810.00826.
[47] PETAR V, GUILLEM C, ARANTXA C, et al. Graph attention networks[EB/OL]. (2018?02?04)[2022?01?01].https://arxiv.org/abs/1710.10903.
[48] LI Meng, HSU W, XIE Xiaodong, et al. SACNN: self-attention convolutional neural network for low-dose CT denoising with self-supervised perceptual loss network[J]. IEEE transactions on medical imaging, 2020, 39(7): 2289-2301.
相似文献/References:
[1]汪? 中,刘贵全,陈恩红.基于模糊K-harmonic means的谱聚类算法[J].智能系统学报,2009,4(2):95.
 WANG Zhong,LIU Gui-quan,CHEN En-hong.A spectral clustering algorithm based on fuzzy Kharmonic means[J].CAAI Transactions on Intelligent Systems,2009,4():95.
[2]张伟伟,薄 华,王晓峰.多特征-谱聚类的SAR图像溢油分割[J].智能系统学报,2010,5(6):551.
 ZHANG Wei-wei,BO Hua,WANG Xiao-feng.SAR oil spill image segmentationbased on a multispectral clustering algorithm[J].CAAI Transactions on Intelligent Systems,2010,5():551.
[3]张媛媛,霍静,杨婉琪,等.深度信念网络的二代身份证异构人脸核实算法[J].智能系统学报,2015,10(2):193.[doi:10.3969/j.issn.1673-4785.201405060]
 ZHANG Yuanyuan,HUO Jing,YANG Wanqi,et al.A deep belief network-based heterogeneous face verification method for the second-generation identity card[J].CAAI Transactions on Intelligent Systems,2015,10():193.[doi:10.3969/j.issn.1673-4785.201405060]
[4]丁科,谭营.GPU通用计算及其在计算智能领域的应用[J].智能系统学报,2015,10(1):1.[doi:10.3969/j.issn.1673-4785.201403072]
 DING Ke,TAN Ying.A review on general purpose computing on GPUs and its applications in computational intelligence[J].CAAI Transactions on Intelligent Systems,2015,10():1.[doi:10.3969/j.issn.1673-4785.201403072]
[5]马晓,张番栋,封举富.基于深度学习特征的稀疏表示的人脸识别方法[J].智能系统学报,2016,11(3):279.[doi:10.11992/tis.201603026]
 MA Xiao,ZHANG Fandong,FENG Jufu.Sparse representation via deep learning features based face recognition method[J].CAAI Transactions on Intelligent Systems,2016,11():279.[doi:10.11992/tis.201603026]
[6]刘帅师,程曦,郭文燕,等.深度学习方法研究新进展[J].智能系统学报,2016,11(5):567.[doi:10.11992/tis.201511028]
 LIU Shuaishi,CHENG Xi,GUO Wenyan,et al.Progress report on new research in deep learning[J].CAAI Transactions on Intelligent Systems,2016,11():567.[doi:10.11992/tis.201511028]
[7]林大华,杨利锋,邓振云,等.稀疏样本自表达子空间聚类算法[J].智能系统学报,2016,11(5):696.[doi:10.11992/tis.201601005]
 LIN Dahua,YANG Lifeng,DENG Zhenyun,et al.Sparse sample self-representation for subspace clustering[J].CAAI Transactions on Intelligent Systems,2016,11():696.[doi:10.11992/tis.201601005]
[8]马世龙,乌尼日其其格,李小平.大数据与深度学习综述[J].智能系统学报,2016,11(6):728.[doi:10.11992/tis.201611021]
 MA Shilong,WUNIRI Qiqige,LI Xiaoping.Deep learning with big data: state of the art and development[J].CAAI Transactions on Intelligent Systems,2016,11():728.[doi:10.11992/tis.201611021]
[9]王亚杰,邱虹坤,吴燕燕,等.计算机博弈的研究与发展[J].智能系统学报,2016,11(6):788.[doi:10.11992/tis.201609006]
 WANG Yajie,QIU Hongkun,WU Yanyan,et al.Research and development of computer games[J].CAAI Transactions on Intelligent Systems,2016,11():788.[doi:10.11992/tis.201609006]
[10]黄心汉.A3I:21世纪科技之光[J].智能系统学报,2016,11(6):835.[doi:10.11992/tis.201605022]
 HUANG Xinhan.A3I: the star of science and technology for the 21st century[J].CAAI Transactions on Intelligent Systems,2016,11():835.[doi:10.11992/tis.201605022]

备注/Memo

收稿日期:2022-8-27。
基金项目:国家自然科学基金项目(61877067,91338115);近地面探测技术重点实验室开放基金项目(6142414211503);重点实验室稳定支持项目(6142414200511);高等学校学科创新引智基地“111”计划(B08038).
作者简介:陈容珊, 硕士研究生,主要研究方向为深度学习、深度聚类;高淑萍,教授,博士,主要研究方向为数学与信息技术交叉研究、大数据分析与处理。曾获陕西省科学技术二等奖。主持、参与国家与省级基金项目、横向项目等16项,发表学术论文40余篇;齐小刚,教授,博士生导师,主要研究方向为复杂系统建模与仿真、网络算法设计与应用。申请专利 47 项 (授权 19 项),登记软件著作权 4 项。发表学术论文 100 余篇
通讯作者:高淑萍.E-mail:gaosp@mail.xidian.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com