[1]陈容珊,高淑萍,齐小刚.注意力机制和图卷积神经网络引导的谱聚类方法[J].智能系统学报,2023,18(5):936-944.[doi:10.11992/tis.202208041]
CHEN Rongshan,GAO Shuping,QI Xiaogang.A spectral clustering based on GCNs and attention mechanism[J].CAAI Transactions on Intelligent Systems,2023,18(5):936-944.[doi:10.11992/tis.202208041]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
18
期数:
2023年第5期
页码:
936-944
栏目:
学术论文—机器学习
出版日期:
2023-09-05
- Title:
-
A spectral clustering based on GCNs and attention mechanism
- 作者:
-
陈容珊, 高淑萍, 齐小刚
-
西安电子科技大学 数学与统计学院, 陕西 西安 710071
- Author(s):
-
CHEN Rongshan, GAO Shuping, QI Xiaogang
-
School of Mathematics and Statistics, Xidian University, Xi’an 710071, China
-
- 关键词:
-
深度学习; 谱聚类; 图像分类; 图卷积神经网络; 注意力机制; 卷积神经网络; 图像分割; 深度聚类
- Keywords:
-
deep learning; spectral clustering; image classification; graph convolutional neural networks; attention mechanism; convolutional neural networks; image segmentation; deep clustering
- 分类号:
-
TP391.1
- DOI:
-
10.11992/tis.202208041
- 摘要:
-
经典的谱聚类算法需要计算图拉普拉斯矩阵的特征分解,代价昂贵,学者们将深度学习模型引入谱聚类算法。然而,现有的方法存在一定的局限性。针对现有聚类模型忽略了节点间的关联度信息,导致聚类结果不准确;当图神经网络中的节点数目发生变化时,需要更新整张图,耗费大量存储空间的问题,本文将注意力机制与改进的图卷积神经网络架构相结合,提出了一种基于注意力和图卷积神经网络的谱聚类方法。该方法主要利用注意力机制引导节点聚类,然后建立相应的目标,通过训练神经网络计算出目标最优时对应的聚类分配,并在图重构过程中利用注意力信息和拓扑信息双重引导,从而提升重构的精确度。实验结果显示,本文提出的方法在图分类、图聚类及图重构中具有良好性能。
- Abstract:
-
The classical spectral clustering algorithm often involves computationally expensive feature decomposition of the Laplacian matrix, prompting researchers to introduce a deep learning model into the spectral clustering algorithm. Nonetheless, the existing methods possess certain limitations. The existing clustering model neglects the information on the correlation degree between nodes, which leads to inaccurate clustering results. Additionally, when the number of nodes in the graph neural network changes, the whole graph requires updating, leading to extensive storage space consumption. By combining the attention mechanism with the improved architecture of graph convolutional neural networks, this paper proposes a spectral clustering method based on the attention and graph convolutional neural network to address these issues. The proposed method mainly utilizes the attention mechanism to guide node clustering, following which it establishes the corresponding target. The corresponding cluster allocation, when the target is optimal, is calculated by training the neural network. Attention information and topological information are used to guide the graph reconstruction process, thereby improving the accuracy of reconstruction. Experimental results reveal that the proposed method exhibits excellent performance in graph classification, graph clustering, and graph reconstruction tasks.
备注/Memo
收稿日期:2022-8-27。
基金项目:国家自然科学基金项目(61877067,91338115);近地面探测技术重点实验室开放基金项目(6142414211503);重点实验室稳定支持项目(6142414200511);高等学校学科创新引智基地“111”计划(B08038).
作者简介:陈容珊, 硕士研究生,主要研究方向为深度学习、深度聚类;高淑萍,教授,博士,主要研究方向为数学与信息技术交叉研究、大数据分析与处理。曾获陕西省科学技术二等奖。主持、参与国家与省级基金项目、横向项目等16项,发表学术论文40余篇;齐小刚,教授,博士生导师,主要研究方向为复杂系统建模与仿真、网络算法设计与应用。申请专利 47 项 (授权 19 项),登记软件著作权 4 项。发表学术论文 100 余篇
通讯作者:高淑萍.E-mail:gaosp@mail.xidian.edu.cn
更新日期/Last Update:
1900-01-01