[1]钱进,童志钢,余鹰,等.基于广义自适应多粒度的多源信息融合研究[J].智能系统学报,2023,18(1):173-185.[doi:10.11992/tis.202208030]
QIAN Jin,TONG Zhigang,YU Ying,et al.Multi-source information fusion through generalized adaptive multi-granulation[J].CAAI Transactions on Intelligent Systems,2023,18(1):173-185.[doi:10.11992/tis.202208030]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
18
期数:
2023年第1期
页码:
173-185
栏目:
吴文俊人工智能科学技术奖论坛
出版日期:
2023-01-05
- Title:
-
Multi-source information fusion through generalized adaptive multi-granulation
- 作者:
-
钱进1, 童志钢1, 余鹰1, 洪承鑫1, 苗夺谦1,2
-
1. 华东交通大学 软件学院,江西 南昌 330013;
2. 同济大学 电子与信息工程学院,上海 201804
- Author(s):
-
QIAN Jin1, TONG Zhigang1, YU Ying1, HONG Chengxin1, MIAO Duoqian1,2
-
1. College of Software Engineering, East China Jiaotong University, Nanchang 330013, China;
2. College of Electronic and Information Engineering, Tongji University, Shanghai 201804, China
-
- 关键词:
-
多源信息; 信息融合; 决策理论粗糙集; 粗糙集; 广义自适应多粒度; 多粒度; 自适应阈值; 知识粒度
- Keywords:
-
multi-source information; information fusion; decision-theoretic rough set; rough set; generalized adaptive multi-granulation; multi-granulation; adaptive thresholds; knowledge granularity
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.202208030
- 摘要:
-
多粒度粗糙集模型是一种有效的信息融合策略。利用该策略能从多个角度将多源信息进行融合,并转化成一致的信息表示。现有的大多数多粒度信息融合方法对每个知识粒度都采用相同的阈值,然而,众所周知,不同的信息源的来源和噪声都不尽相同,其对应的知识粒度的阈值也应不同。为此,首先在广义多粒度粗糙集中引入单参数决策理论粗糙集,提出了广义自适应多粒度粗糙集模型。然后,利用经典的融合策略设计了4种广义多粒度模型,所有模型都可以通过一个参数补偿系数$ \zeta $来自适应地获得知识粒度对应的阈值对,并讨论了这些模型的相关性质。最后,通过实验结果证明,所提模型在实际应用中灵活性更高,决策更为合理。
- Abstract:
-
The multi-granulation rough set model is an effective information fusion strategy. In this paper, this strategy is used to fuse multi-source information from multiple perspectives, and then this information is translated into a consistent information representation. However, most existing multi-granulation information fusion methods use the same threshold value for each knowledge granularity. As we all know, the origin and noise differ among information sources, and the threshold values of the corresponding knowledge granularity should differ. To this end, in this paper, a generalized adaptive multi-granulation rough set model is proposed by combining a single-parameter decision-theoretic rough set with a generalized multi-granulation rough set. Then, four types of generalized multi-granulation models are designed based on typical fusion strategies so that all models can obtain threshold pairs corresponding to knowledge granularity by setting a compensation coefficient $ \zeta $. Furthermore, the relevant properties of these models are discussed. Finally, the experimental results demonstrate that the proposed model is more flexible and reasonable in practical applications.
备注/Memo
收稿日期:2022-08-22。
基金项目:国家自然科学基金项目(62066014,62163016);江西省自然科学基金项目(20202BABL202018,20212ACB202001)
作者简介:钱进,教授,博士,主要研究方向为粒计算、大数据挖掘和机器学习。主持国家自然科学基金项目2项、省部级自然科学基金项目3项。获江西省自然科学奖1项。发表学术论文50余篇;童志钢,硕士研究生,主要研究方向为粗糙集、粒计算和大数据挖掘;苗夺谦,教授,博士,国际粗糙集学会理事长、中国人工智能学会会士、中国计算机学会杰出会员,主要研究方向为粒计算、不确定性、大数据分析。荣获中国人工智能学会吴文俊人工智能自然科学二等奖1项;主持国家自然科学基金面上项目7项,发表学术论文180余篇,ESI高被引8篇;出版教材和学术著作10余部。
通讯作者:钱进.E-mail:qjqjlqyf@163.com
更新日期/Last Update:
1900-01-01