[1]张远健,赵天娜,苗夺谦.基于粒的标记增强标记分布学习[J].智能系统学报,2023,18(2):390-398.[doi:10.11992/tis.202208015]
 ZHANG Yuanjian,ZHAO Tianna,MIAO Duoqian.Granule-based label enhancement in label distribution learning[J].CAAI Transactions on Intelligent Systems,2023,18(2):390-398.[doi:10.11992/tis.202208015]
点击复制

基于粒的标记增强标记分布学习

参考文献/References:
[1] ZHANG Minling, ZHOU Zhihua. A review on multi-label learning algorithms[J]. IEEE transactions on knowledge and data engineering, 2014, 26(8): 1819–1837.
[2] GIBAJA E, VENTURA S. A tutorial on multilabel learning[J]. ACM computing surveys, 2015, 47(3): 52.
[3] 耿新, 徐宁. 标记分布学习与标记增强[J]. 中国科学:信息科学, 2018, 48(5): 521–530
GENG Xin, XU Ning. Label distribution learning and label enhancement[J]. Scientia sinica (informationis), 2018, 48(5): 521–530
[4] YAO Yiyang, WANG Luo, ZHANG Luming, et al. Learning latent stable patterns for image understanding with weak and noisy labels[J]. IEEE transactions on cybernetics, 2019, 49(12): 4243–4252.
[5] 曾雪强, 华鑫, 刘平生, 等. 基于情感轮和情感词典的文本情感分布标记增强方法[J]. 计算机学报, 2021, 44(6): 1080–1094
ZENG Xueqiang, HUA Xin, LIU Pingsheng, et al. Emotion wheel and lexicon based text emotion distribution label enhancement method[J]. Chinese journal of computers, 2021, 44(6): 1080–1094
[6] GENG Xin. Label distribution learning[J]. IEEE transactions on knowledge and data engineering, 2016, 28(7): 1734–1748.
[7] SHAO Ruifeng, XU Ning, GENG Xin. Multi-label learning with label enhancement[C]//IEEE International Conference on Data Mining. Singapore: IEEE, 2018: 437-446.
[8] 熊传镇,钱文彬,王映龙. 基于标记增强和模糊辨识度的标记分布特征选择[J]. 数据采集与处理, 2021, 36(3): 529-543.
XIONG Chuanzhen, QIAN Wenbin, WANG Yinglong. Label enhancement and fuzzy discernibility based label distribution feature selection[J]. Journal of data acquisition and processing, 2021, 36(3): 529-543.
[9] XU Ning, LIU Yunpeng, GENG Xin. Label enhancement for label distribution learning[J]. IEEE transactions on knowledge and data engineering, 2021, 33(4): 1632–1643.
[10] EL GAYAR N, SCHWENKER F, PALM G. A study of the robustness of KNN classifiers trained using soft labels[M]//Artificial Neural Networks in Pattern Recognition. Berlin: Springer Berlin, 2006: 67?80.
[11] JIANG Xiufeng, YI Zhang, LYU Jiancheng. Fuzzy SVM with a new fuzzy membership function[J]. Neural computing and applications, 2006, 15(3/4): 268–276.
[12] LI Yukun, ZHANG Minling, GENG Xin. Leveraging implicit relative labeling-importance information for effective multi-label learning[J]. 2015 IEEE international conference on data mining, 2015: 251?260.
[13] HOU Peng, GENG Xin, ZHANG Minling. Multi-label manifold learning[J]. Proceedings of the AAAI conference on artificial intelligence, 2016, 30(1): 1680–1686.
[14] YAO Jing tao, VASILAKOS A V, PEDRYCZ W. Granular computing: perspectives and challenges[J]. IEEE transactions on cybernetics, 2013, 43(6): 1977–1989.
[15] 刘清,邱桃荣,刘澜. 基于非标准分析的粒计算研究[J]. 计算机学报, 2015, 38(8): 1618?1627.
LIU Qing, QIU Taorong, LIU Lan. The research of granular computing based on nonstandard analysis[J]. Chinese journal of computers, 2015, 38(8): 1618?1627.
[16] PEDRYCZ W. Granular computing for data analytics: a manifesto of human-centric computing[J]. IEEE/CAA journal of automatica sinica, 2018, 5(6): 1025–1034.
[17] 徐健锋,苗夺谦,张远健. 分段延迟代价敏感三支决策[J]. 软件学报, 2022, 33(10): 3754–3775
XU Jianfeng, MIAO Duoqian, ZHANG Yuanjian. Piece-wise delay cost-sensitive three-way decisions[J]. Journal of software, 2022, 33(10): 3754–3775
[18] 苗夺谦,高阳,吴伟志,等. 粒计算与知识发现白皮书[R]. 北京:中国人工智能学会, 2022.
MIAO Duoqian, GAO Yang, WU Weizhi, et al. White paper for granular computing and knowledge discovery[R]. Beijing: Chinese Association for Artificial Intelligence, 2022.
[19] ZHANG Yuanjian, MIAO Duoqian, ZHANG Zhifei, et al. A three-way selective ensemble model for multi-label classification[J]. International journal of approximate reasoning, 2018, 103: 394–413.
[20] ZHANG Yuanjian, MIAO Duoqian, PEDRYCZ W, et al. Granular structure-based incremental updating for multi-label classification[J]. Knowledge-based systems, 2020, 189: 105066.
[21] ZHANG Yuanjian, ZHAO Tianna, MIAO Duoqian, et al. Granular multilabel batch active learning with pairwise label correlation[J]. IEEE transactions on systems, man, and cybernetics:systems, 2022, 52(5): 3079–3091.
[22] HUANG Shengjun, ZHOU Zhihua. Multi-label learning by exploiting label correlations locally[C]//AAAI’12: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence. New York: ACM, 2012: 949?955.
[23] ZHENG Xiang, JIA Xiuyi, LI Weiwei. Label distribution learning by exploiting sample correlations locally[J]. Proceedings of the AAAI conference on artificial intelligence, 2018, 32(1): 3310–3317.
[24] JIA Xiuyi, LI Zechao, ZHENG Xiang, et al. Label distribution learning with label correlations on local samples[J]. IEEE transactions on knowledge and data engineering, 2021, 33(4): 1619–1631.
[25] ZHANG Jujie, FANG Min, LI Xiao. Clustered intrinsic label correlations for multi-label classification[J]. Expert systems with applications, 2017, 81: 134–146.
[26] GENG Xin, YIN Chao, ZHOU Zhihua. Facial age estimation by learning from label distributions[J]. IEEE transactions on pattern analysis and machine intelligence, 2013, 35(10): 2401–2412.
相似文献/References:
[1]王国胤,张清华,胡? 军.粒计算研究综述[J].智能系统学报,2007,2(6):8.
 WANG Guo-yin,ZHANG Qing-hua,HU Jun.An overview of granular computing[J].CAAI Transactions on Intelligent Systems,2007,2():8.
[2]周丹晨.采用粒计算的属性权重确定方法[J].智能系统学报,2015,10(2):273.[doi:10.3969/j.issn.1673-4785.201312008]
 ZHOU Danchen.A method for ascertaining the weight of attributes based on granular computing[J].CAAI Transactions on Intelligent Systems,2015,10():273.[doi:10.3969/j.issn.1673-4785.201312008]
[3]李峰,苗夺谦,刘财辉,等.基于决策粗糙集的图像分割[J].智能系统学报,2014,9(2):143.[doi:10.3969/j.issn.1673-4785.201307022]
 LI Feng,MIAO Duoqian,LIU Caihui,et al.Image segmentation algorithm based on the decision-theoretic rough set model[J].CAAI Transactions on Intelligent Systems,2014,9():143.[doi:10.3969/j.issn.1673-4785.201307022]
[4]汤建国,汪江桦,韩莉英,等.基于覆盖粗糙集的语言动力系统[J].智能系统学报,2014,9(2):229.[doi:10.3969/j.issn.1673-4785.201307018]
 TANG Jianguo,WANG Jianghua,HAN Liying,et al.Linguistic dynamic systems based on covering-based rough sets[J].CAAI Transactions on Intelligent Systems,2014,9():229.[doi:10.3969/j.issn.1673-4785.201307018]
[5]刘翠君,赵才荣,苗夺谦,等.粒化的Mean Shift行人跟踪算法[J].智能系统学报,2016,11(4):433.[doi:10.11992/tis.201605033]
 LIU Cuijun,ZHAO Cairong,MIAO Duoqian,et al.Granular mean shift pedestrian tracking algorithm[J].CAAI Transactions on Intelligent Systems,2016,11():433.[doi:10.11992/tis.201605033]
[6]苗夺谦,张清华,钱宇华,等.从人类智能到机器实现模型——粒计算理论与方法[J].智能系统学报,2016,11(6):743.[doi:10.11992/tis.201612014]
 MIAO Duoqian,ZHANG Qinghua,QIAN Yuhua,et al.From human intelligence to machine implementation model: theories and applications based on granular computing[J].CAAI Transactions on Intelligent Systems,2016,11():743.[doi:10.11992/tis.201612014]
[7]王映龙,曾淇,钱文彬,等.变精度下不完备邻域决策系统的属性约简算法[J].智能系统学报,2017,12(3):386.[doi:10.11992/tis.201705027]
 WANG Yinglong,ZENG Qi,QIAN Wenbin,et al.Attribute reduction algorithm of the incomplete neighborhood decision system with variable precision[J].CAAI Transactions on Intelligent Systems,2017,12():386.[doi:10.11992/tis.201705027]
[8]徐健锋,何宇凡,汤涛,等.概率粗糙集三支决策在线快速计算算法研究[J].智能系统学报,2018,13(5):741.[doi:10.11992/tis.201706047]
 XU Jianfeng,HE Yufan,TANG Tao,et al.Research on a fast online computing algorithm based on three-way decisions with probabilistic rough sets[J].CAAI Transactions on Intelligent Systems,2018,13():741.[doi:10.11992/tis.201706047]
[9]刘盾,李天瑞,梁德翠,等.三支决策的时空性[J].智能系统学报,2019,14(1):141.[doi:10.11992/tis.201804045]
 LIU Dun,LI Tianrui,LIANG Decui,et al.Temporality and spatiality of three-way decisions[J].CAAI Transactions on Intelligent Systems,2019,14():141.[doi:10.11992/tis.201804045]
[10]黄琴,钱文彬,王映龙,等.代价敏感数据的多标记特征选择算法[J].智能系统学报,2019,14(5):929.[doi:10.11992/tis.201807027]
 HUANG Qin,QIAN Wenbin,WANG Yinglong,et al.Multi-label feature selection algorithm for cost-sensitive data[J].CAAI Transactions on Intelligent Systems,2019,14():929.[doi:10.11992/tis.201807027]

备注/Memo

收稿日期:2022-08-11。
基金项目:中国博士后科学基金资助项目(2022M713491);国家自然科学基金项目(61976158)
作者简介:张远健,博士,中国银联股份有限公司博士后,中国计算机学会会员,主要研究方向为多标记分类、粒计算、联邦学习,主持中国博士后面上基金1项。发表学术论文10余篇;赵天娜,博士研究生,中国人工智能学会会员,主要研究方向为标记分布学习、粒计算、不确定性。发表学术论文7篇;苗夺谦,教授,博士,国际粗糙集学会理事长、中国人工智能学会会士、中国计算机学会杰出会员,主要研究方向为粒计算、不确定性、大数据分析。荣获中国人工智能学会吴文俊人工智能自然科学二等奖1项;主持国家自然科学基金面上项目7项,出版教材和学术著作10余部。发表学术论文180余篇,ESI高被引8篇
通讯作者:张远健. E-mail:zhangyuanjian@unionpay.com

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com