[1]张远健,赵天娜,苗夺谦.基于粒的标记增强标记分布学习[J].智能系统学报,2023,18(2):390-398.[doi:10.11992/tis.202208015]
ZHANG Yuanjian,ZHAO Tianna,MIAO Duoqian.Granule-based label enhancement in label distribution learning[J].CAAI Transactions on Intelligent Systems,2023,18(2):390-398.[doi:10.11992/tis.202208015]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
18
期数:
2023年第2期
页码:
390-398
栏目:
吴文俊人工智能科学技术奖论坛
出版日期:
2023-05-05
- Title:
-
Granule-based label enhancement in label distribution learning
- 作者:
-
张远健1, 赵天娜2, 苗夺谦2
-
1. 中国银联股份有限公司,上海 201201;
2. 同济大学 电子与信息工程学院,上海 201804
- Author(s):
-
ZHANG Yuanjian1, ZHAO Tianna2, MIAO Duoqian2
-
1. China UnionPay Co. Ltd, Shanghai 201201, China;
2. College of Electronic and Information Engineering, Tongji University, Shanghai 201804, China
-
- 关键词:
-
粒计算; 标记分布学习; 标记增强; 多标记; 不确定性; 局部相关性; 聚类; 拓扑
- Keywords:
-
granular computing; label distribution learning; label enhancement; multi-label; uncertainty; local label correlation; clustering; topology
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.202208015
- 摘要:
-
标记分布学习能有效求解多标记学习任务,然而分类器构造以获得大规模具有更强监督信息的标注为前提,在许多应用中难以满足。一种替代的方案是以标记增强的方式从传统逻辑形式的标注中挖掘出隐含的数值型标记的重要程度。现有的标记增强方法大多假设增强后的标记需要在所有示例上保持原有逻辑标记的相关性,不能有效保持局部标记相关性。基于粒计算理论,提出了一种适用于标记分布学习的粒化标记增强学习方法。该方法通过k均值聚类构造具有局部相关性语义的信息粒,并在粒的抽象层面上,分别在图上依据逻辑标记的特性和属性空间的拓扑性质完成粒内示例的标记转化。最后,将得到的标记分布在示例层面进行融合,得到描述整个数据集标记重要程度的数值型标记。大量比较研究表明,所提出的模型可以显著地提升多标记学习的性能。
- Abstract:
-
Label distribution learning can effectively deal with multilabel learning tasks. However, the construction of a classifier is based on the premise of obtaining large-scale labels with strong supervision information, which is difficult to be satisfied in many applications. An alternative solution is to mine the importance of implicit numerical labels from the traditional logical form of annotation through label enhancement. Existing label enhancement methods mainly assume that the enhanced label must maintain the relevance of the original logical label in all instances, which fails to preserve local label correlation. This paper proposes a granular-based label enhancement distribution model applicable to label distribution learning, considering the methodology of granular computing. The method constructs information granules with local correlation semantics by employing k-means clustering and completes the labeling transformation of instances in granules on the graph according to the characteristics of logical labeling and the topological properties of attribute space at the abstract level of granules. Finally, the obtained label distribution is fused at the instance level, obtaining the numerical label describing the importance of the whole data set. Extensive studies have shown that the proposed model significantly improves the accuracy of multilabel learning.
备注/Memo
收稿日期:2022-08-11。
基金项目:中国博士后科学基金资助项目(2022M713491);国家自然科学基金项目(61976158)
作者简介:张远健,博士,中国银联股份有限公司博士后,中国计算机学会会员,主要研究方向为多标记分类、粒计算、联邦学习,主持中国博士后面上基金1项。发表学术论文10余篇;赵天娜,博士研究生,中国人工智能学会会员,主要研究方向为标记分布学习、粒计算、不确定性。发表学术论文7篇;苗夺谦,教授,博士,国际粗糙集学会理事长、中国人工智能学会会士、中国计算机学会杰出会员,主要研究方向为粒计算、不确定性、大数据分析。荣获中国人工智能学会吴文俊人工智能自然科学二等奖1项;主持国家自然科学基金面上项目7项,出版教材和学术著作10余部。发表学术论文180余篇,ESI高被引8篇
通讯作者:张远健. E-mail:zhangyuanjian@unionpay.com
更新日期/Last Update:
1900-01-01