[1]张铭泉,邢福德,刘冬.基于改进Faster R-CNN的变电站设备外部缺陷检测[J].智能系统学报,2024,19(2):290-298.[doi:10.11992/tis.202207016]
 ZHANG Mingquan,XING Fude,LIU Dong.External defect detection of transformer substation equipment based on improved Faster R-CNN[J].CAAI Transactions on Intelligent Systems,2024,19(2):290-298.[doi:10.11992/tis.202207016]
点击复制

基于改进Faster R-CNN的变电站设备外部缺陷检测

参考文献/References:
[1] 薛艺为, 孙奇珍, 党卫军. 基于Faster RCNN的配网设备红外图像缺陷识别方法[J]. 信息技术, 2020, 44(7): 79–83,91
XUE Yiwei, SUN Qizhen, DANG Weijun. Infrared image defect recognition method of distribution network equipment based on Faster RCNN[J]. Information technology, 2020, 44(7): 79–83,91
[2] 黄锐勇, 戴美胜, 郑跃斌, 等. 电力设备红外图像缺陷检测[J]. 中国电力, 2021, 54(2): 147–155
HUANG ruiyong, DAI meisheng, ZHENG yuebin, et al. Infrared image defect detection of power equipment[J]. Electric power, 2021, 54(2): 147–155
[3] 徐小冰, 袁婧, 廖雁群, 等. 基于Faster RCNN与Mean-Shift的电缆附件缺陷红外图像自动诊断方法[J]. 高电压技术, 2020, 46(9): 3070–3080
XU Xiaobing YUAN Jing LIAO Yanqun, et al. Autonomous diagnosis method for defects of cable accessories based on Faster RCNN and mean-shift algorithm by infrared images[J]. High voltage engineering, 2020, 46(9): 3070–3080
[4] 刘召, 张黎明, 耿美晓, 等. 基于改进的Faster R-CNN高压线缆目标检测方法[J]. 智能系统学报, 2019, 14(4): 627–634
LIU Zhao, ZHANG Liming, GENG Meixiao, et al. Object detection of high-voltage cable based on improved Faster R-CNN[J]. CAAI transactions on intelligent systems, 2019, 14(4): 627–634
[5] 赵文清, 程幸福, 赵振兵, 等. 注意力机制和Faster RCNN相结合的绝缘子识别[J]. 智能系统学报, 2020, 15(1): 92–98
ZHAO Wenqing, CHENG Xingfu, ZHAO Zhenbing, et al. Insulator recognition based on attention mechanism and Faster RCNN[J]. CAAI transactions on intelligent systems, 2020, 15(1): 92–98
[6] 冯晗, 姜勇. 使用改进 Yolov5 的变电站绝缘子串检测方法[J]. 智能系统学报, 2022, 18(2): 325–332
FENG Han JIANG Yong. A substation insulator string detection method based on an improved Yolov5[J]. CAAI transactions on intelligent systems, 2022, 18(2): 325–332
[7] 刘开培, 李博强, 秦亮, 等. 深度学习目标检测算法在架空输电线路绝缘子缺陷检测中的应用研究综述[J]. 高电压技术, 2023, 49(9): 3584–3595
LIU Kaipei, LI Boqiang, QIN Liang, et al. Review of application research of deep learning object detection algorithms in insulator defect detection of overhead transmission lines[J]. High voltage engineering, 2023, 49(9): 3584–3595
[8] 刘黎, 韩睿, 韩译锋, 等. 改进的Faster-RCNN目标检测方法在变电站悬挂异物检测中的应用[J]. 电测与仪表, 2021, 58(1): 142–146
LIU Li, HAN Rui, HAN Yifeng, et al. Application of an improved Faster-RCNN object detection method in the detection of suspended foreign matters in substation[J]. Electrical measurement & instrumentation, 2021, 58(1): 142–146
[9] 戚银城, 赵席彬, 耿劭锋, 等. 基于遮挡关系推理的输电线路图像金具检测[J]. 智能系统学报, 2022, 17(6): 1154–1162
QI Yincheng, ZHAO Xibin, GENG Shaofeng, et al. Fittings detection in transmission line images with occlusion relation inference[J]. CAAI transactions on intelligent systems, 2022, 17(6): 1154–1162
[10] 赵振兵, 江爱雪, 戚银城, 等. 嵌入遮挡关系模块的SSD模型的输电线路图像金具检测[J]. 智能系统学报, 2020, 15(4): 656–662
ZHAO Zhenbing, JIANG Aixue, QI Yincheng, et al. Fittings detection in transmission line images with SSD model embedded occlusion relation module[J]. CAAI transactions on intelligent systems, 2020, 15(4): 656–662
[11] 翟永杰, 王乾铭, 杨旭, 等. 融合外部知识的输电线路多金具解耦检测方法[J]. 智能系统学报, 2022, 17(5): 980–989
ZHAI Yongjie, WANG Qianming, YANG Xu, et al. A multi-fitting decoupling detection method for transmission lines based on external knowledge[J]. CAAI transactions on intelligent systems, 2022, 17(5): 980–989
[12] 琚泽立, 邢伟, 金鸿鹏, 等. 基于轻量化网络的变电站缺陷图片检测算法[J]. 电网与清洁能源, 2020, 36(8): 43–49
JU Zeli, XING Wei, JIN Hongpeng, et al. Detection of substation faults image based on lightweight network[J]. Power system and clean energy, 2020, 36(8): 43–49
[13] 万吉林, 吴国强, 管敏渊, 等. 基于RetinaNet的变压器图像小部件智能识别方法[J]. 电力系统保护与控制, 2021, 49(12): 166–173
WAN Jilin, WU Guoqiang, GUAN Minyuan, et al. Intelligent recognition method for transformer small components based on RetinaNet[J]. Power system protection and control, 2021, 49(12): 166–173
[14] 尹子会, 孟荣, 范晓丹, 等. 融合边缘计算和改进Faster R-CNN的变电站设备典型视觉缺陷检测系统[J]. 中国科技论文, 2021, 16(3): 343–348
YIN Zihui, MENG Rong, FAN Xiaodan, et al. Typical visual defect detection system of substation equipment based on edge computing and improved Faster R-CNN[J]. China sciencepaper, 2021, 16(3): 343–348
[15] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 580-587.
[16] GIRSHICK R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision . Santiago: IEEE, 2016: 1440-1448.
[17] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137–1149.
[18] LIN T Y, DOLL?R P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition . Honolulu: IEEE, 2017: 936-944.
[19] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition . Las Vegas: IEEE, 2016: 779-788.
[20] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition . Honolulu: IEEE, 2017: 6517-6525.
[21] REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08)[2020-01-01]. https://arxiv.org/abs/1804.02767.
[22] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. (2020-04-23)[2022-01-01]. https://arxiv.org/abs/2004.10934.pdf.
[23] LIU W, ANGUELOV D, ERHAN D, et al. (2016). Ssd: Single shot multibox detector[EB/OL]. (2016-03-30)[2022-01-01]. https://arxiv.org/abs/1512.02325.
[24] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//2017 IEEE International Conference on Computer Vision . Venice: IEEE, 2017: 2999-3007.
[25] LIU Shu, QI Lu, QIN Haifang, et al. Path aggregation network for instance segmentation[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 8759-8768.
[26] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 37(9): 1904–1916.
[27] YU Jiahui, JIANG Yuning, WANG Zhangyang, et al. UnitBox: an advanced object detection network[C]//Proceedings of the 24th ACM International Conference on Multimedia. Amsterdam The Netherlands. New York: ACM, 2016: 516-520.
[28] REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Long Beach: IEEE, 2020: 658-666.
[29] ZHENG Zhaohui, WANG Ping, LIU Wei, et al. Distance-IoU loss: faster and better learning for bounding box regression[J]. Proceedings of the AAAI conference on artificial intelligence, 2020, 34(7): 12993–13000.
[30] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//European Conference on Computer Vision. Cham: Springer, 2014: 740-755.
相似文献/References:
[1]张媛媛,霍静,杨婉琪,等.深度信念网络的二代身份证异构人脸核实算法[J].智能系统学报,2015,10(2):193.[doi:10.3969/j.issn.1673-4785.201405060]
 ZHANG Yuanyuan,HUO Jing,YANG Wanqi,et al.A deep belief network-based heterogeneous face verification method for the second-generation identity card[J].CAAI Transactions on Intelligent Systems,2015,10():193.[doi:10.3969/j.issn.1673-4785.201405060]
[2]丁科,谭营.GPU通用计算及其在计算智能领域的应用[J].智能系统学报,2015,10(1):1.[doi:10.3969/j.issn.1673-4785.201403072]
 DING Ke,TAN Ying.A review on general purpose computing on GPUs and its applications in computational intelligence[J].CAAI Transactions on Intelligent Systems,2015,10():1.[doi:10.3969/j.issn.1673-4785.201403072]
[3]马晓,张番栋,封举富.基于深度学习特征的稀疏表示的人脸识别方法[J].智能系统学报,2016,11(3):279.[doi:10.11992/tis.201603026]
 MA Xiao,ZHANG Fandong,FENG Jufu.Sparse representation via deep learning features based face recognition method[J].CAAI Transactions on Intelligent Systems,2016,11():279.[doi:10.11992/tis.201603026]
[4]刘帅师,程曦,郭文燕,等.深度学习方法研究新进展[J].智能系统学报,2016,11(5):567.[doi:10.11992/tis.201511028]
 LIU Shuaishi,CHENG Xi,GUO Wenyan,et al.Progress report on new research in deep learning[J].CAAI Transactions on Intelligent Systems,2016,11():567.[doi:10.11992/tis.201511028]
[5]马世龙,乌尼日其其格,李小平.大数据与深度学习综述[J].智能系统学报,2016,11(6):728.[doi:10.11992/tis.201611021]
 MA Shilong,WUNIRI Qiqige,LI Xiaoping.Deep learning with big data: state of the art and development[J].CAAI Transactions on Intelligent Systems,2016,11():728.[doi:10.11992/tis.201611021]
[6]王亚杰,邱虹坤,吴燕燕,等.计算机博弈的研究与发展[J].智能系统学报,2016,11(6):788.[doi:10.11992/tis.201609006]
 WANG Yajie,QIU Hongkun,WU Yanyan,et al.Research and development of computer games[J].CAAI Transactions on Intelligent Systems,2016,11():788.[doi:10.11992/tis.201609006]
[7]黄心汉.A3I:21世纪科技之光[J].智能系统学报,2016,11(6):835.[doi:10.11992/tis.201605022]
 HUANG Xinhan.A3I: the star of science and technology for the 21st century[J].CAAI Transactions on Intelligent Systems,2016,11():835.[doi:10.11992/tis.201605022]
[8]宋婉茹,赵晴晴,陈昌红,等.行人重识别研究综述[J].智能系统学报,2017,12(6):770.[doi:10.11992/tis.201706084]
 SONG Wanru,ZHAO Qingqing,CHEN Changhong,et al.Survey on pedestrian re-identification research[J].CAAI Transactions on Intelligent Systems,2017,12():770.[doi:10.11992/tis.201706084]
[9]杨梦铎,栾咏红,刘文军,等.基于自编码器的特征迁移算法[J].智能系统学报,2017,12(6):894.[doi:10.11992/tis.201706037]
 YANG Mengduo,LUAN Yonghong,LIU Wenjun,et al.Feature transfer algorithm based on an auto-encoder[J].CAAI Transactions on Intelligent Systems,2017,12():894.[doi:10.11992/tis.201706037]
[10]王科俊,赵彦东,邢向磊.深度学习在无人驾驶汽车领域应用的研究进展[J].智能系统学报,2018,13(1):55.[doi:10.11992/tis.201609029]
 WANG Kejun,ZHAO Yandong,XING Xianglei.Deep learning in driverless vehicles[J].CAAI Transactions on Intelligent Systems,2018,13():55.[doi:10.11992/tis.201609029]

备注/Memo

收稿日期:2022-07-11。
基金项目:国家自然科学基金青年基金项目(61802124 );中央高校基本科研业务费专项(2020MS122).
作者简介:张铭泉,副教授,博士,中国计算机学会会员,主要研究方向为机器学习、计算机体系结构、区块链技术。发表学术论文20 余篇。E-mail:mqzhang@ncepu.edu.cn;邢福德,硕士研究生,主要研究方向为计算机视觉、目标检测。E-mail:xingfude1030@163.com;刘冬,硕士研究生,主要研究方向为计算机视觉、目标检测。E-mail: ncepu_liudong@foxmail.com
通讯作者:张铭泉. E-mail:mqzhang@ncepu.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com