[1]管凤旭,路斯棋,郑岩.多尺度特征融合的双判别器残差生成对抗网络[J].智能系统学报,2023,18(5):917-925.[doi:10.11992/tis.202207005]
 GUAN Fengxu,LU Siqi,ZHENG Yan.Dual discriminator residual generation adversarial network with multiscale feature fusion[J].CAAI Transactions on Intelligent Systems,2023,18(5):917-925.[doi:10.11992/tis.202207005]
点击复制

多尺度特征融合的双判别器残差生成对抗网络

参考文献/References:
[1] KINGMA D P, WELLING M. Auto-encoding variational Bayes[C]//2nd International Conference on Learning Representations. Banff: ICLR, 2014: 1-14.
[2] REZENDE D J, MOHAMED S, WIERSTRA D. Stochastic backpropagation and approximate inference in deep generative models[C]//2014 International Conference on Machine Learning. SAN DIEGO: JMLR, 2014: 1278?1286.
[3] HINTON G E, SEJNOWSKI T J, ACKLEY D H. Boltzmann machines: constraint satisfaction networks that learn[J]. Cognitive science, 1994, 9: 1-40.
[4] ACKLEY D H, HINTON G E, SEJNOWSKI T J. A learning algorithm for boltzmann machines[J]. Cognitive science, 1985, 9(1): 147-169.
[5] GOODFELLOW I, POUGET-ABADIE J, MIRZA M. Generative adversarial nets[C]//Proceedings of the 2014 Conference on Advances in Neural Information Processing Systems 27. Montreal: Curran Associates, 2014. 2672?2680.
[6] RUAN Congcong, YUAN Liuchun, HU Haifeng, et al. Image translation with dual-directional generative adversarial networks[J]. IET computer vision, 2021, 15(1): 73-83.
[7] CHEN Xiaocong, LI Yun, YAO Lina, et al. Generative adversarial U-net for domain-free medical image augmentation[EB/OL]. (2021?01?12)[2022?07?06]. https://arxiv.org/abs/2101.04793.
[8] KONG Jiahui, SHEN Haibin, HUANG Kejie. DualPathGAN: facial reenacted emotion synthesis[J]. IET computer vision, 2021, 15(7): 501-513.
[9] 张冀, 曹艺, 王亚茹, 等. 融合VAE和StackGAN的零样本图像分类方法[J]. 智能系统学报, 2022, 17(3): 593-601
ZHANG Ji, CAO Yi, WANG Yaru, et al. Zero-shot image classification method combining VAE and StackGAN[J]. CAAI transactions on intelligent systems, 2022, 17(3): 593-601
[10] 王凯旋, 任福继, 倪红军, 等. 基于循环互相关系数的CGAN温度值图像扩增[J]. 智能系统学报, 2022, 17(1): 32-40
WANG Kaixuan, REN Fuji, NI Hongjun, et al. Image amplification for temperature value image based on cyclic cross-correlation coefficient CGAN[J]. CAAI transactions on intelligent systems, 2022, 17(1): 32-40
[11] 姜义, 吕荣镇, 刘明珠, 等. 基于生成对抗网络的人脸口罩图像合成[J]. 智能系统学报, 2021, 16(6): 1073-1080
JIANG Yi, LYU Rongzhen, LIU Mingzhu, et al. Masked face image synthesis based on a generative adversarial network[J]. CAAI transactions on intelligent systems, 2021, 16(6): 1073-1080
[12] 尹诗, 侯国莲, 胡晓东, 等. 基于AC-GAN数据重构的风电机组主轴承温度监测方法[J]. 智能系统学报, 2021, 16(6): 1106-1116
YIN Shi, HOU Guolian, HU Xiaodong, et al. Temperature monitoring method of the main bearing of wind turbine based on AC-GAN data reconstruction[J]. CAAI transactions on intelligent systems, 2021, 16(6): 1106-1116
[13] MIYATO T, KATAOKA T, KOYAMA M, et al. Spectral normalization for generative adversarial networks[EB/OL]. (2018?02?16)[2022?07?06]. https://arxiv.org/abs/1802.05957.
[14] CASANOVA A, CAREIL M, VERBEEK J, et al. Instance-conditioned GAN[C]//35th Conference on Neural Information Processing Systems. North torrey: NIPS, 2021.
[15] CHAVDAROVA T, FLEURET F. SGAN: an alternative training of generative adversarial networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 9407-9415.
[16] KANG M, SHIM W J, CHO M, et al. Rebooting ACGAN: auxiliary classifier GANs with stable training[C]// Neural Information Processing Systems. Virtual: NeurlPS, 2021: 1-13.
[17] 史彩娟, 涂冬景, 刘靖祎. Re-GAN: 残差生成式对抗网络算法[J]. 中国图象图形学报, 2021, 26(3): 594-604
SHI Caijuan, TU Dongjing, LIU Jingyi. Re-GAN: residual generative adversarial network algorithm[J]. Journal of image and graphics, 2021, 26(3): 594-604
[18] RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[EB/OL]. (2016?01?07)[2022?07?06]. https://arxiv.org/abs/1511.06434.
[19] KARRAS T, AILA, LAINE S, et al. Progressive growing of GANs for improved quality, stability, and variation[EB/OL]. (2018?02?26)[2022?07?06]. https://arxiv.org/abs/1710.10196.
[20] MIRZA M, OSINDERO S. Conditional generative adversarial nets[EB/OL]. (2014?11?06)[2022?07?06]. https://arxiv.org/abs/1411.1784.
[21] ODENA A, OLAH C, SHLENS J. Conditional image synthesis with auxiliary classifier GANs[C]// 34th International Conference on Machine Learning. San Diego: JMLR, 2017.
[22] ZHOU Peng, XIE Lingxi, NI Bingbing, et al. Omni-GAN: on the secrets of cGANs and beyond[C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2022: 14041-14051.
[23] NGUYEN T D, LE Trung, VU Hung, et al. Dual discriminator generative adversarial nets[J]. Advances in neural information processing systems, 2017, 30(12): 2671-2681.
[24] ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein Gan[EB/OL]. (2017?12?06)[2022?07?06]. https://arxiv.org/abs/1701.07875.
[25] Gulrajani I, Ahmed F, Arjovsky M, et al. Improved training of wasserstein GANs[J]. Advances in neural information processing systems, 2017, 30(12): 5768-5778.
[26] BHASKARA V S, AUMENTADO-ARMSTRONG T, JEPSON A, et al. GraN-GAN: piecewise gradient normalization for generative adversarial networks[C]//2022 IEEE/CVF Winter Conference on Applications of Computer Vision. Waikoloa: IEEE, 2022: 2432-2441.
[27] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
[28] HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2261-2269.
相似文献/References:
[1]张媛媛,霍静,杨婉琪,等.深度信念网络的二代身份证异构人脸核实算法[J].智能系统学报,2015,10(2):193.[doi:10.3969/j.issn.1673-4785.201405060]
 ZHANG Yuanyuan,HUO Jing,YANG Wanqi,et al.A deep belief network-based heterogeneous face verification method for the second-generation identity card[J].CAAI Transactions on Intelligent Systems,2015,10():193.[doi:10.3969/j.issn.1673-4785.201405060]
[2]丁科,谭营.GPU通用计算及其在计算智能领域的应用[J].智能系统学报,2015,10(1):1.[doi:10.3969/j.issn.1673-4785.201403072]
 DING Ke,TAN Ying.A review on general purpose computing on GPUs and its applications in computational intelligence[J].CAAI Transactions on Intelligent Systems,2015,10():1.[doi:10.3969/j.issn.1673-4785.201403072]
[3]马晓,张番栋,封举富.基于深度学习特征的稀疏表示的人脸识别方法[J].智能系统学报,2016,11(3):279.[doi:10.11992/tis.201603026]
 MA Xiao,ZHANG Fandong,FENG Jufu.Sparse representation via deep learning features based face recognition method[J].CAAI Transactions on Intelligent Systems,2016,11():279.[doi:10.11992/tis.201603026]
[4]刘帅师,程曦,郭文燕,等.深度学习方法研究新进展[J].智能系统学报,2016,11(5):567.[doi:10.11992/tis.201511028]
 LIU Shuaishi,CHENG Xi,GUO Wenyan,et al.Progress report on new research in deep learning[J].CAAI Transactions on Intelligent Systems,2016,11():567.[doi:10.11992/tis.201511028]
[5]马世龙,乌尼日其其格,李小平.大数据与深度学习综述[J].智能系统学报,2016,11(6):728.[doi:10.11992/tis.201611021]
 MA Shilong,WUNIRI Qiqige,LI Xiaoping.Deep learning with big data: state of the art and development[J].CAAI Transactions on Intelligent Systems,2016,11():728.[doi:10.11992/tis.201611021]
[6]王亚杰,邱虹坤,吴燕燕,等.计算机博弈的研究与发展[J].智能系统学报,2016,11(6):788.[doi:10.11992/tis.201609006]
 WANG Yajie,QIU Hongkun,WU Yanyan,et al.Research and development of computer games[J].CAAI Transactions on Intelligent Systems,2016,11():788.[doi:10.11992/tis.201609006]
[7]黄心汉.A3I:21世纪科技之光[J].智能系统学报,2016,11(6):835.[doi:10.11992/tis.201605022]
 HUANG Xinhan.A3I: the star of science and technology for the 21st century[J].CAAI Transactions on Intelligent Systems,2016,11():835.[doi:10.11992/tis.201605022]
[8]宋婉茹,赵晴晴,陈昌红,等.行人重识别研究综述[J].智能系统学报,2017,12(6):770.[doi:10.11992/tis.201706084]
 SONG Wanru,ZHAO Qingqing,CHEN Changhong,et al.Survey on pedestrian re-identification research[J].CAAI Transactions on Intelligent Systems,2017,12():770.[doi:10.11992/tis.201706084]
[9]杨梦铎,栾咏红,刘文军,等.基于自编码器的特征迁移算法[J].智能系统学报,2017,12(6):894.[doi:10.11992/tis.201706037]
 YANG Mengduo,LUAN Yonghong,LIU Wenjun,et al.Feature transfer algorithm based on an auto-encoder[J].CAAI Transactions on Intelligent Systems,2017,12():894.[doi:10.11992/tis.201706037]
[10]王科俊,赵彦东,邢向磊.深度学习在无人驾驶汽车领域应用的研究进展[J].智能系统学报,2018,13(1):55.[doi:10.11992/tis.201609029]
 WANG Kejun,ZHAO Yandong,XING Xianglei.Deep learning in driverless vehicles[J].CAAI Transactions on Intelligent Systems,2018,13():55.[doi:10.11992/tis.201609029]
[11]朱文霖,刘华平,王博文,等.基于视-触跨模态感知的智能导盲系统[J].智能系统学报,2020,15(1):33.[doi:10.11992/tis.201908015]
 ZHU Wenlin,LIU Huaping,WANG Bowen,et al.An intelligent blind guidance system based on visual-touch cross-modal perception[J].CAAI Transactions on Intelligent Systems,2020,15():33.[doi:10.11992/tis.201908015]
[12]毕晓君,潘梦迪.基于生成对抗网络的机载遥感图像超分辨率重建[J].智能系统学报,2020,15(1):74.[doi:10.11992/tis.202002002]
 BI Xiaojun,PAN Mengdi.Super-resolution reconstruction of airborne remote sensing images based on the generative adversarial networks[J].CAAI Transactions on Intelligent Systems,2020,15():74.[doi:10.11992/tis.202002002]
[13]王昌安,田金文.生成对抗网络辅助学习的舰船目标精细识别[J].智能系统学报,2020,15(2):296.[doi:10.11992/tis.201901004]
 WANG Changan,TIAN Jinwen.Fine-grained inshore ship recognition assisted by deep-learning generative adversarial networks[J].CAAI Transactions on Intelligent Systems,2020,15():296.[doi:10.11992/tis.201901004]
[14]姜义,吕荣镇,刘明珠,等.基于生成对抗网络的人脸口罩图像合成[J].智能系统学报,2021,16(6):1073.[doi:10.11992/tis.202012010]
 JIANG Yi,LYU Rongzhen,LIU Mingzhu,et al.Masked face image synthesis based on a generative adversarial network[J].CAAI Transactions on Intelligent Systems,2021,16():1073.[doi:10.11992/tis.202012010]
[15]张冀,曹艺,王亚茹,等.融合VAE和StackGAN的零样本图像分类方法[J].智能系统学报,2022,17(3):593.[doi:10.11992/tis.202107012]
 ZHANG Ji,CAO Yi,WANG Yaru,et al.Zero-shot image classification method combining VAE and StackGAN[J].CAAI Transactions on Intelligent Systems,2022,17():593.[doi:10.11992/tis.202107012]
[16]翟永杰,张智柏,王亚茹.基于改进TransGAN的零样本图像识别方法[J].智能系统学报,2023,18(2):352.[doi:10.11992/tis.202111002]
 ZHAI Yongjie,ZHANG Zhibai,WANG Yaru.An image recognition method of zero -shot learning based on an improved TransGAN[J].CAAI Transactions on Intelligent Systems,2023,18():352.[doi:10.11992/tis.202111002]
[17]卢娟,陈纯毅.融合递归自编解码器的蒙卡画面重构降噪方法[J].智能系统学报,2023,18(3):459.[doi:10.11992/tis.202112011]
 LU Juan,CHEN Chunyi.A denoised method by fusing recursive auto-encoder decorder for Monte Carlo rendering image reconstruction[J].CAAI Transactions on Intelligent Systems,2023,18():459.[doi:10.11992/tis.202112011]

备注/Memo

收稿日期:2022-7-6。
基金项目:国家自然科学基金项目(62101156).
作者简介:管凤旭,副教授,博士,主要研究方向为无人系统自主控制、机器视觉目标检测与跟踪、计算机控制及应用。获授权发明专利近20项,出版教材5部,发表学术论文40余篇;路斯棋,硕士研究生,主要研究方向为水下图像处理、计算机视觉;郑岩,讲师,博士,主要研究方向为计算机视觉和机器学习
通讯作者:管凤旭.E-mail:guanfengxu@hrbeu.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com