[1]管凤旭,路斯棋,郑岩.多尺度特征融合的双判别器残差生成对抗网络[J].智能系统学报,2023,18(5):917-925.[doi:10.11992/tis.202207005]
GUAN Fengxu,LU Siqi,ZHENG Yan.Dual discriminator residual generation adversarial network with multiscale feature fusion[J].CAAI Transactions on Intelligent Systems,2023,18(5):917-925.[doi:10.11992/tis.202207005]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
18
期数:
2023年第5期
页码:
917-925
栏目:
学术论文—机器学习
出版日期:
2023-09-05
- Title:
-
Dual discriminator residual generation adversarial network with multiscale feature fusion
- 作者:
-
管凤旭, 路斯棋, 郑岩
-
哈尔滨工程大学 智能科学与工程学院, 黑龙江 哈尔滨 150001
- Author(s):
-
GUAN Fengxu, LU Siqi, ZHENG Yan
-
School of Intelligent Science and Engineering, Harbin Engineering University, Harbin 150001, China
-
- 关键词:
-
生成对抗网络; 深度学习; 无监督模型; 模式崩溃; 梯度爆炸; 梯度消失; 多尺度特征融合; 训练稳定性
- Keywords:
-
generative adversarial networks; deep learning; unsupervised model; mode collapse; gradient explosion; gradient disappearance; multiscale feature fusion; training stability
- 分类号:
-
TP18
- DOI:
-
10.11992/tis.202207005
- 摘要:
-
生成对抗网络(generative adversarial networks, GANs)作为一类基于深度学习的无监督生成模型,无需对数据分布进行建模便可以生成真实且质量较高的图像。标准的GANs往往训练困难,常出现梯度消失、梯度爆炸或者模式崩溃等问题,限制模型的性能。为解决模式崩溃问题,本文提出一种双判别器结构来提高模型生成图像的多样性。另外,本文改进了生成器模型和判别器模型,提出一种基于残差网络和多尺度特征融合的生成器和基于多尺度特征融合的判别器,在提高生成图像质量的前提下解决深层网络出现的梯度消失、梯度爆炸的问题。将其应用于MNIST、LSUN、CelebA数据集上,训练结果稳定且生成图像质量较高,取得了令人满意的FID和IS值。
- Abstract:
-
Generative adversarial networks (GANs), a class of unsupervised generative models based on deep learning, have shown promising results in generating realistic and high-quality images without modeling the data distribution. However, standard GANs are often difficult to train and often suffer from gradient disappearance, gradient explosion, or mode collapse, which can limit the overall performance of the model. To address the mode collapse problem and improve the variety of the generated images, this paper proposes a dual discriminator structure. Furthermore, this paper improves the generator and discriminator model and proposes a generator based on residual network and multiscale feature fusion and a discriminator based on multiscale feature fusion, which effectively solves the problem of gradient disappearance and gradient explosion that occurs in deep networks while improving the quality of generated images. The proposed approach is applied to various datasets, including MNIST, LSUN, and CelebA. The training results reveal that the stability and quality of the generated images are high, achieving satisfying FID and IS values.
更新日期/Last Update:
1900-01-01