[1]齐小刚,单明媚,张皓然.软件定义网络故障诊断综述[J].智能系统学报,2023,18(4):662-675.[doi:10.11992/tis.202205037]
 QI Xiaogang,SHAN Mingmei,ZHANG Haoran.Summary of software-defined networking fault diagnosis[J].CAAI Transactions on Intelligent Systems,2023,18(4):662-675.[doi:10.11992/tis.202205037]
点击复制

软件定义网络故障诊断综述

参考文献/References:
[1] 杨泽卫, 李呈. 重构网络: SDN架构与实现[M]. 北京: 电子工业出版社, 2017: 1?255.
YANG Zewei, LI Cheng. Refactoring networks: SDN architecture and implementation[M]. Beijing: Publishing House of Electronics Industry, 2017: 1?255.
[2] ALEX A, BARAKABITZE. 5G network slicing using SDN and NFV: a survey of taxonomy, architectures and future challenges[J]. Computer networks, 2020, 167: 1–40.
[3] DUSIA A, SETHI A S. Recent advances in fault localization in computer networks[J]. IEEE communications surveys & tutorials, 2016, 18(4): 3030–3051.
[4] CéRIN C, COTI C, DELORT P, et al. Downtime statistics of current cloud solutions[EB/OL]. ( 2014-03-31)[2022?05?10]. http://iwgcr.org/wp-content/uploads/2014/03/downtime-statistics-current-1.3.pdf.
[5] FONSECA P C, MOTA E S. A survey on fault management in software-defined networks[J]. IEEE communications surveys & tutorials, 2017, 19(4): 2284–2321.
[6] TSAI P W, TSAI C W, HSU C W, et al. Network monitoring in software-defined networking: a review[J]. IEEE systems journal, 2018, 12(4): 3958–3969.
[7] YU Yinbo, LI Xing, LENG Xue, et al. Fault management in software-defined networking: a survey[J]. IEEE communications surveys & tutorials, 2019, 21(1): 349–392.
[8] 张朝昆, 崔勇, 唐翯翯, 等. 软件定义网络(SDN)研究进展[J]. 软件学报, 2015, 26(1): 62–81
ZHANG Chaokun, CUI Yong, TANG Hehe, et al. State-of-the-art survey on software-defined networking (SDN)[J]. Journal of software, 2015, 26(1): 62–81
[9] CHERRARED S, IMADALI S, FABRE E, et al. A survey of fault management in network virtualization environments: challenges and solutions[J]. IEEE transactions on network and service management, 2019, 16(4): 1537–1551.
[10] MCKEOWN N, ANDERSON T, BALAKRISHNAN H, et al. OpenFlow[J]. ACM SIGCOMM computer communication review, 2008, 38(2): 69–74.
[11] BAYS L R, GASPARY L P. Reality shock in virtual network embedding: Flexibilizing demands for dealing with multiple operational requirements in SDNs[J]. Journal of network and computer applications, 2020, 153: 1–13.
[12] 程光, 王玉祥, 胡一非, 等. 基于OpenFlow的链路故障诊断方法[J]. 北京邮电大学学报, 2015, 38(5): 42–46
CHENG Guang, WANG Yuxiang, HU Yifei, et al. Network link fault diagnosis based on OpenFlow[J]. Journal of Beijing University of Posts and Telecommunications, 2015, 38(5): 42–46
[13] MOHAMMED A R, MOHAMMED S A, C?Té D, et al. Machine learning-based network status detection and fault localization[J]. IEEE transactions on instrumentation and measurement, 2021, 70: 1–10.
[14] ZHAO Yanling, LI Ye, ZHANG Xinchang, et al. A survey of networking applications applying the software defined networking concept based on machine learning[J]. IEEE access, 2019, 7: 95397–95417.
[15] SUH J, KWON T T, DIXON C, et al. OpenSample: a low-latency, sampling-based measurement platform for commodity SDN[C]//2014 IEEE 34th International Conference on Distributed Computing Systems. Piscataway: IEEE, 2014: 228?237.
[16] REHMAN S U, SONG W C, KANG M. Network-wide traffic visibility in OF@TEIN SDN testbed using sFlow[C]//The 16th Asia-Pacific Network Operations and Management Symposium. Piscataway: IEEE, 2014: 1?6.
[17] VULET P, BOSAK B, DIMOLIANIS M, et al. Localization of network service performance degradation in multi-tenant networks[J]. Computer networks, 2020, 168: 1–13.
[18] CASTILLO E F, RENDON O M C, ORDONEZ A, et al. IPro: an approach for intelligent SDN monitoring[J]. Computer networks, 2020, 170: 1–18.
[19] LI Feng, YAO Yiru, WANG Liangmin, et al. Multi-timescale and multi-centrality layered node selection for efficient traffic monitoring in SDNs[J]. Computer networks, 2021, 198: 1–11.
[20] YANG Tian, CHEN Weiwei, LEA C T. An SDN-based traffic matrix estimation framework[J]. IEEE transactions on network and service management, 2018, 15(4): 1435–1445.
[21] TOOTOONCHIAN A, GHOBADI M, GANJALI Y. OpenTM: traffic matrix estimator for OpenFlow networks[M]. Berlin: Springer Berlin Heidelberg, 2010: 201?210.
[22] MALBOUBI M, WANG Liyuan, CHUAH C N, et al. Intelligent SDN based traffic (de) aggregation and measurement paradigm (iSTAMP)[C]//IEEE INFOCOM 2014 - IEEE Conference on Computer Communications. Piscataway: IEEE, 2014: 934?942.
[23] VAN ADRICHEM N L M, DOERR C, KUIPERS F A. OpenNetMon: network monitoring in OpenFlow software-defined networks[C]//2014 IEEE Network Operations and Management Symposium. Piscataway: IEEE, 2014: 1?8.
[24] WANG Lu, SUN Meng, TANG Shaoju. SCSCDaylight: network monitoring tools for software-defined networks based on opendaylight[C]//2019 International Conference on Intelligent Computing, Automation and Systems. Piscataway: IEEE, 2020: 320?323.
[25] LI Chunlei, JIANG Kun, LUO Yonlong. Dynamic placement of multiple controllers based on SDN and allocation of computational resources based on heuristic ant colony algorithm[J]. Knowledge-based systems, 2022, 241: 1–19.
[26] YAN Qiao, YU F R, GONG Qingxiang, et al. Software-defined networking (SDN) and distributed denial of service (DDoS) attacks in cloud computing environments: a survey, some research issues, and challenges[J]. IEEE communications surveys & tutorials, 2016, 18(1): 602–622.
[27] ZHANG Peng, ZHANG Fangzheng, XU Shimin, et al. Network-wide forwarding anomaly detection and localization in software defined networks[J]. IEEE/ACM transactions on networking, 2021, 29(1): 332–345.
[28] POLAT H, TüRKOLU M, POLAT O, et al. A novel approach for accurate detection of the DDoS attacks in SDN-based SCADA systems based on deep recurrent neural networks[J]. Expert systems with applications, 2022, 197: 1–12.
[29] SCARANTI G F, CARVALHO L F, JUNIOR S B, et al. Unsupervised online anomaly detection in Software Defined Network environments[J]. Expert systems with applications, 2022, 191: 1–13.
[30] ZHOU Haifeng, WU Chunming, YANG Chengyu, et al. SDN-RDCD: a real-time and reliable method for detecting compromised SDN devices[J]. IEEE/ACM transactions on networking, 2018, 26(5): 2048–2061.
[31] HU Zhijun, WU Libing, LI Jianxin, et al. Everyone in SDN contributes: fault localization via well-designed rules[C]//2021 IEEE 41st International Conference on Distributed Computing Systems. Piscataway: IEEE, 2021: 370?380.
[32] WEN Xitao, BU Kai, YANG Bo, et al. RuleScope: inspecting forwarding faults for software-defined networking[J]. IEEE/ACM transactions on networking, 2017, 25(4): 2347–2360.
[33] ZHANG Peng, ZHANG Cheng, HU Chengchen. Fast data plane testing for software-defined networks with RuleChecker[J]. IEEE/ACM transactions on networking, 2019, 27(1): 173–186.
[34] KE Yuming, HSIAO H C, KIM T H J. SDNProbe: lightweight fault localization in the error-prone environment[C]//2018 IEEE 38th International Conference on Distributed Computing Systems. Piscataway: IEEE, 2018: 489-499.
[35] ARYAN R, YAZIDI A, BRATTENSBORG F, et al. SDN Spotlight: a real-time OpenFlow troubleshooting framework[J]. Future generation computer systems, 2022, 133(C): 364–377.
[36] WANG Lei, LI Qing, JIANG Yong, et al. Woodpecker: Detecting and mitigating link-flooding attacks via SDN[J]. Computer networks, 2018, 147: 1–13.
[37] LIAO Lingxia, LEUNG V C M, CHEN Min. An efficient and accurate link latency monitoring method for low-latency software-defined networks[J]. IEEE transactions on instrumentation and measurement, 2019, 68(2): 377–391.
[38] CHOU L D, LIU C C, LAI Mengsheng, et al. Behavior anomaly detection in SDN control plane: a case study of topology discovery attacks[C]//2019 International Conference on Information and Communication Technology Convergence. Piscataway: IEEE, 2019: 357?362.
[39] NEHRA A, TRIPATHI M, GAUR M S, et al. SLDP: a secure and lightweight link discovery protocol for software defined networking[J]. Computer networks, 2019, 150: 102–116.
[40] SEDDIQI H, BABAIE S. A new protection-based approach for link failure management of software-defined networks[J]. IEEE transactions on network science and engineering, 2021, 8(4): 3303–3312.
[41] YAMANSAVASCILAR B, BAKTIR A C, OZGOVDE A, et al. Enhancing QoE for video streaming considering congestion: a fault tolerance approach[C]//IEEE INFOCOM 2019 - IEEE Conference on Computer Communications Workshops. Piscataway: IEEE, 2019: 258?263.
[42] KIM S M, YANG G, YOO C, et al. BFD-based link latency measurement in software defined networking[C]//2017 13th International Conference on Network and Service Management. Piscataway: IEEE, 2018: 1?6.
[43] SáNCHEZ J M, YAHIA I G B, CRESPI N. Self-modeling based diagnosis of Software-Defined Networks[C]//Proceedings of the 2015 1st IEEE Conference on Network Softwarization. Piscataway: IEEE, 2015: 1-6.
[44] SáNCHEZ J M, YAHIA I G B, CRESPI N. Self-modeling based diagnosis of services over programmable networks[C]//2016 IEEE NetSoft Conference and Workshops. Piscataway: IEEE, 2016: 277-285.
[45] SáNCHEZ J M, YAHIA I G B, CRESPI N. THESARD: On the road to resilience in software-defined networking through self-diagnosis[C]//2016 IEEE NetSoft Conference and Workshops . Piscataway: IEEE, 2016: 351-352.
[46] CHERRARED S, IMADALI S, FABRE E, et al. SFC self-modeling and active diagnosis[J]. IEEE transactions on network and service management, 2021, 18(3): 2515–2530.
[47] YU Yinbo, LI Xing, BU Kai, et al. Falcon: Differential fault localization for SDN control plane[J]. Computer networks, 2019, 162: 1–13.
[48] CARVALHO L F, ABR?O T, DE SOUZA MENDES L, et al. An ecosystem for anomaly detection and mitigation in software-defined networking[J]. Expert systems with applications, 2018, 104: 121-133.
[49] BENAYAS F, CARRERA A, IGLESIAS C A. Towards an autonomic Bayesian fault diagnosis service for SDN environments based on a big data infrastructure[C]//2018 Fifth International Conference on Software Defined Systems. Piscataway: IEEE, 2018: 7?13.
[50] SOPHAKAN N, SATHITWIRIYAWONG C. Securing OpenFlow controller of software-defined networks using Bayesian network[C]//2018 22nd International Computer Science and Engineering Conference. Piscataway: IEEE, 2019: 1?4.
[51] BENNACER L, AMIRAT Y, CHIBANI A, et al. Self-diagnosis technique for virtual private networks combining Bayesian networks and case-based reasoning[J]. IEEE transactions on automation science and engineering, 2015, 12(1): 354–366.
[52] ZHANG Huanhuan, DONG Fang, SHEN Dian, et al. Virtual network fault diagnosis mechanism based on fault injection[C]//2017 IEEE 21st International Conference on Computer Supported Cooperative Work in Design. Piscataway: IEEE, 2017: 384?389.
[53] SAUVANAUD C, LAZRI K, KA?NICHE M, et al. Anomaly detection and root cause localization in virtual network functions[C]//2016 IEEE 27th International Symposium on Software Reliability Engineering. Piscataway: IEEE, 2016: 196?206.
[54] COTRONEO D, DE SIMONE L, NATELLA R. ThorFI: a novel approach for network fault injection as a service[J]. Journal of network and computer applications, 2022, 201: 1–14.
[55] COTRONEO D, DE SIMONE L, LIGUORI P, et al. ProFIPy: programmable software fault injection as-a-service[C]//2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks. Piscataway: IEEE, 2020: 364-372.
[56] YU Minlan. Network telemetry[J]. ACM SIGCOMM computer communication review, 2019, 49(1): 11–17.
[57] TAN Lizhuang. In-band network telemetry: a survey[J]. Computer networks, 2021, 186: 1–20.
[58] TAN Lizhuang, SU Wei, ZHANG Wei, et al. A packet loss monitoring system for in-band network telemetry: detection, localization, diagnosis and recovery[J]. IEEE transactions on network and service management, 2021, 18(4): 4151–4168.
[59] HAXHIBEQIRI J, ISOLANI P H, MARQUEZ-BARJA J M, et al. In-band network monitoring technique to support SDN-based wireless networks[J]. IEEE transactions on network and service management, 2021, 18(1): 627–641.
[60] VAN TU N, HYUN J, HONG J W K. Towards ONOS-based SDN monitoring using in-band network telemetry[C]//2017 19th Asia-Pacific Network Operations and Management Symposium. Piscataway: IEEE, 2017: 76?81.
[61] HAXHIBEQIRI J, MOERMAN I, HOEBEKE J. Low overhead, fine-grained end-to-end monitoring of wireless networks using In-band telemetry[C]//2019 15th International Conference on Network and Service Management. Piscataway: IEEE, 2020: 1?5.
[62] ZHANG Yan, PAN Tian, ZHENG Yan, et al. Automating rapid network anomaly detection with In-band network telemetry[J]. IEEE networking letters, 2022, 4(1): 39–42.
[63] TANG Yongning, WU Yangxuan, CHENG Guang, et al. Intelligence enabled SDN fault localization via programmable In-band network telemetry[C]//2019 IEEE 20th International Conference on High Performance Switching and Routing. Piscataway: IEEE, 2019: 1?6.
[64] CHERRARED S, IMADALI S, FABRE E, et al. LUMEN: a global fault management framework for network virtualization environments[C]//2018 21st Conference on Innovation in Clouds, Internet and Networks and Workshops. Piscataway: IEEE, 2018: 1?8.
[65] CHEN H H, LU Hanlin, HUANG S K, et al. Diagnosing SDN network problems by using spectrum-based fault localization techniques[C]//2015 IEEE International Conference on Software Quality, Reliability and Security - Companion. Piscataway: IEEE, 2015: 121?127.
[66] MESTRES A, RODRIGUEZ-NATAL A, CARNER J, et al. Knowledge-defined networking[J]. ACM SIGCOMM computer communication review, 2017, 47(3): 2–10.
[67] REHMAN A U, AGUIAR R L, BARRACA J P. Fault-tolerance in the scope of software-defined networking (SDN)[J]. IEEE access, 2019, 7: 124474–124490.
[68] CHICA J C C, IMBACHI J C, VEGA J F B. Security in SDN: a comprehensive survey[J]. Journal of network and computer applications, 2020, 159: 1–23.
[69] MALDONADO J, RIFF M C, NEVEU B. A review of recent approaches on wrapper feature selection for intrusion detection[J]. Expert systems with applications, 2022, 198: 1–21.

备注/Memo

收稿日期:2022-05-23。
基金项目:国家自然科学基金项目(61877067).
作者简介:齐小刚,教授,博士生导师,主要研究方向为系统建模与故障诊断。主持国家自然科学基金项目1项、陕西省自然科学基金项目2项,参与国家、省部级项目、中国?加拿大国际合作项目、国家重点实验室专项基金项目等7项。发表学术论文100余篇;单明媚,硕士研究生,主要研究方向为SDN网络的优化和故障诊断;张皓然,硕士研究生,主要研究方向为多层复杂网络优化和故障定位
通讯作者:齐小刚.E-mail:xgqi@xidian.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com