[1]沈健,夏鸿斌,刘渊.双关系预测与特征融合的实体关系抽取模型[J].智能系统学报,2024,19(2):462-471.[doi:10.11992/tis.202204047]
 SHEN Jian,XIA Hongbin,LIU Yuan.Entity relation extraction model with dual relation prediction and feature fusion[J].CAAI Transactions on Intelligent Systems,2024,19(2):462-471.[doi:10.11992/tis.202204047]
点击复制

双关系预测与特征融合的实体关系抽取模型

参考文献/References:
[1] 张勇, 高大林, 巩敦卫, 等. 用于关系抽取的注意力图长短时记忆神经网络[J]. 智能系统学报, 2021, 16(3): 518–527
ZHANG Yong, GAO Dalin, GONG Dunwei, et al. Attention graph long short-term memory neural network for relation extraction[J]. CAAI transactions on intelligent systems, 2021, 16(3): 518–527
[2] 杨志豪, 洪莉, 林鸿飞, 等. 基于支持向量机的生物医学文献蛋白质关系抽取[J]. 智能系统学报, 2008, 3(4): 361–369
YANG Zhihao, HONG Li, LIN Hongfei, et al. Extraction of information on protein-protein interaction from biomedical literatures using an SVM[J]. CAAI transactions on intelligent systems, 2008, 3(4): 361–369
[3] 范智渊, 何璇, 梁品, 等. 中文医学文献的实体关系提取研究及在糖尿病医学文献中的应用[J]. 生物医学工程学杂志, 2021, 38(3): 563–573
FAN Zhiyuan, HE Xuan, LIANG Pin, et al. Research on entity relationship extraction of Chinese medical literature and application in diabetes medical literature[J]. Journal of biomedical engineering, 2021, 38(3): 563–573
[4] KAMBHATLA N. Combining lexical, syntactic, and semantic features with maximum entropy models for extracting relations[C]//Proceedings of the ACL 2004 on Interactive Poster and Demonstration Sessions. Morristown: Association for Computational Linguistics, 2004: 178-181.
[5] ZHAO Shubin, GRISHMAN R. Extracting relations with integrated information using kernel methods[C]//Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics-ACL ’05. Morristown: Association for Computational Linguistics, 2005: 419-426.
[6] SOARES L B, FITZGERALD N, LING J, et al. Matching the blanks: distributional similarity for relation learning[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2019: 2895-2905.
[7] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all You need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 6000-6010.
[8] CHUNG Y A, ZHU Chenguang, ZENG M. SPLAT: speech-language joint pre-training for spoken language understanding[C]//Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: Association for Computational Linguistics, 2021: 4171-4186.
[9] 罗欣, 陈艳阳, 耿昊天, 等. 基于深度强化学习的文本实体关系抽取方法[J]. 电子科技大学学报, 2022, 51(1): 91–99
LUO Xin, CHEN Yanyang, GENG Haotian, et al. Entity relationship extraction from text data based on deep reinforcement learning[J]. Journal of University of Electronic Science and Technology of China, 2022, 51(1): 91–99
[10] ZHENG Suncong, WANG Feng, BAO Hongyun, et al. Joint extraction of entities and relations based on a novel tagging scheme[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2017: 1227–1236.
[11] 苗琳, 张英俊, 谢斌红, 等. 基于图神经网络的联合实体关系抽取[J]. 计算机应用研究, 2022, 39(2): 424–431
MIAO Lin, ZHANG Yingjun, XIE Binhong, et al. Joint entity relation extraction based on graph neural network[J]. Application research of computers, 2022, 39(2): 424–431
[12] WEI Zhepei, SU Jianlin, WANG Yue, et al. A novel cascade binary tagging framework for relational triple extraction[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2020: 1476-1488.
[13] WANG Yucheng, YU Bowen, ZHANG Yueyang, et al. TPLinker: single-stage joint extraction of entities and relations through token pair linking[C]//Proceedings of the 28th International Conference on Computational Linguistics. Stroudsburg: International Committee on Computational Linguistics, 2020: 1572–1582.
[14] DAUPHIN Y N, FAN A, AULI M, et al. Language modeling with gated convolutional networks[C]// Proceedings of the 34th International Conference on Machine Learning. Sydney: ICML, 2017: 933-941.
[15] 张龙辉, 尹淑娟, 任飞亮, 等. BSLRel: 基于二元序列标注的级联关系三元组抽取模型[J]. 中文信息学报, 2021, 35(6): 74–84
ZHANG Longhui, YIN Shujuan, REN Feiliang, et al. BSLRel: a binary sequence labeling based cascading relation triple extraction model[J]. Journal of Chinese information processing, 2021, 35(6): 74–84
[16] ZHANG Yue, YANG Jie. Chinese NER using lattice LSTM[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2018: 1554-1564.
[17] LI Xiaonan, YAN Hang, QIU Xipeng, et al. FLAT: Chinese NER using flat-lattice transformer[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2020: 6836-6842.
[18] LAFFERTY J D, MCCALLUM A, PEREIRA F C N. Conditional random fields: probabilistic models for segmenting and labeling sequence data[C]//Proceedings of the Eighteenth International Conference on Machine Learning. New York: ACM, 2001: 282-289.
[19] ZENG Xiangrong, HE Shizhu, ZENG Daojian, et al. Learning the extraction order of multiple relational facts in a sentence with reinforcement learning[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2019: 367–377.
[20] ZENG Xiangrong, ZENG Daojian, HE Shizhu, et al. Extracting relational facts by an end-to-end neural model with copy mechanism[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2018: 506–514.
[21] EBERTS M, ULGES A. Span-based joint entity and relation extraction with transformer pre-training[C]//Proceedings of the 24th European Conference on Artificial Intelligence. Santiago de Compostela: ECAI, 2020: 2006-2013.
[22] LI Xiaoya, FENG Jingrong, MENG Yuxian, et al. A unified MRC framework for named entity recognition[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2020: 5849-5859.
[23] YU Bowen, ZHANG Zhenyu, SU Jianlin, et al. Joint extraction of entities and relations based on a novel decomposition strategy[C] // Proceedings of the 24th European Conference on Artificial Intelligence. Santiago de Compostela: ECAI, 2020: 2282-2289.
[24] 王泽儒, 柳先辉. 基于指针级联标注的中文实体关系联合抽取模型[J]. 武汉大学学报(理学版), 2022, 68(3): 304–310
WANG Zeru, LIU Xianhui. Joint model of Chinese entity-relation extraction based on a pointer cascade tagging strategy[J]. Journal of Wuhan University (natural science edition), 2022, 68(3): 304–310
[25] DE VRIES H, STRUB F, MARY J, et al. Modulating early visual processing by language[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 6597-6607.
[26] RIEDEL S, YAO Limin, MCCALLUM A. Modeling relations and their mentions without labeled text[C]//Proceedings of the 2010th European Conference on Machine Learning and Knowledge Discovery in Databases-Volume Part III. New York: ACM, 2010: 148-163.
[27] GARDENT C, SHIMORINA A, NARAYAN S, et al. Creating training corpora for NLG micro-planners[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2017: 179–188.
[28] KINGMA D P, BA J L. Adam: a method for stochastic optimization[C]//Proceedings of the 3rd International Conference on Learning Representations. San Diego: ICLR, 2015.
[29] FU T J, LI P H, MA Weiyun. GraphRel: modeling text as relational graphs for joint entity and relation extraction[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2019: 1409–1418.

备注/Memo

收稿日期:2022-04-29。
基金项目:国家自然科学基金项目(61972182).
作者简介:沈健,硕士研究生,主要研究方向为自然语言处理、实体关系抽取。E-mail:1452112297@qq.com;夏鸿斌,教授, 博士,江苏省特色化软件人才培养专委会委员,江南大学人工智能与计算机学院副院长。主要研究方向为大数据分析与处理、个性化推荐系统、自然语言处理。主持工信部、江苏省科研项目2项,参加国家科技支撑项目1项、江苏省自然科学基金重点项目1项。获江苏省教育成果二等奖、教育部科技成果奖、中国商业联合会科技进步特等奖。发表学术论文20余篇。E-mail:hbxia@jiangnan.edu.cn;刘渊,教授,博士生导师,中国网络空间安全协会会员,江南大学人工智能与计算机学院院长,主要研究方向为网络安全、社交网络。作为项目负责人完成省部级科研项目多项。获中国商业联合会科技奖特等奖、无锡市有突出贡献的中青年专家称号。发表学术论文40余篇。E-mail:lyuan1800@sina.com
通讯作者:夏鸿斌. E-mail:hbxia@jiangnan.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com