[1]邵凯,闫力力,王光宇.压缩感知重构算法的两步深度展开策略研究[J].智能系统学报,2023,18(5):1117-1126.[doi:10.11992/tis.202204029]
 SHAO Kai,YAN Lili,WANG Guangyu.Two-step deep unfolding strategy for compressed sensing reconstruction algorithms[J].CAAI Transactions on Intelligent Systems,2023,18(5):1117-1126.[doi:10.11992/tis.202204029]
点击复制

压缩感知重构算法的两步深度展开策略研究

参考文献/References:
[1] CANDES E J, ROMBERG J, TAO T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE transactions on information theory, 2006, 52(2): 489-509.
[2] DONOHO D L. Compressed sensing[J]. IEEE transactions on information theory, 2006, 52(4): 1289-1306.
[3] ZHANG Zheng, XU Yong, YANG Jian, et al. A survey of sparse representation: algorithms and applications[J]. IEEE access, 2015, 3: 490-530.
[4] CHAMBOLLE A, DE VORE R A, LEE N Y, et al. Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage[J]. IEEE transactions on image processing, 1998, 7(3): 319-335.
[5] BECK A, TEBOULLE M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM journal on imaging sciences, 2009, 2(1): 183-202.
[6] BIOUCAS-DIAS J M, FIGUEIREDO M A T. A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration[J]. IEEE transactions on image processing, 2007, 16(12): 2992-3004.
[7] DONOHO D L, MALEKI A, MONTANARI A. Message-passing algorithms for compressed sensing[J]. Proceedings of the national academy of sciences of the United States of America, 2009, 106(45): 18914-18919.
[8] 许子微, 陈秀宏. 自步稀疏最优均值主成分分析[J]. 智能系统学报, 2016, 16(3): 416-424
XU Ziwei, CHEN Xiuhong. Sparse optimal mean principal component analysis based on self-paced learning[J]. CAAI transactions on intelligent systems, 2016, 16(3): 416-424
[9] 唐荣, 罗川, 曹潜, 等. 不完备数据中面向特征值更新的增量特征选择方法[J]. 智能系统学报, 2021, 16(3): 493-501
TANG Rong, LUO Chuan, CAO Qian, et al. Incremental approach for feature selection in incomplete data while updating feature values[J]. CAAI transactions on intelligent systems, 2021, 16(3): 493-501
[10] 窦勇敢, 袁晓彤. 基于隐式随机梯度下降优化的联邦学习[J]. 智能系统学报, 2022, 17(3): 488-495
DOU Yonggan, YUAN Xiaotong. Federated learning with implicit stochastic gradient descent optimization[J]. CAAI transactions on intelligent systems, 2022, 17(3): 488-495
[11] 包政凯, 朱齐丹, 刘永超. 满秩分解最小二乘法船舶航向模型辨识[J]. 智能系统学报, 2022, 17(1): 137-143
BAO Zhengkai, ZHU Qidan, LIU Yongchao. Ship heading model identification based on full rank decomposition least square method[J]. CAAI transactions on intelligent systems, 2022, 17(1): 137-143
[12] SHI Wuzhen, JIANG Feng, LIU Shiliang, et al. Image compressed sensing using convolutional neural network[J]. IEEE transactions on image processing, 2020, 29: 375-388.
[13] YAO Hantao, DAI Feng, ZHANG Shiliang, et al. DR2-Net: deep residual reconstruction network for image compressive sensing[J]. Neurocomputing, 2019, 359: 483-493.
[14] MOUSAVI A, BARANIUK R G. Learning to invert: signal recovery via deep convolutional networks[C]//2017 IEEE International Conference on Acoustics, Speech and Signal Processing. New Orleans: IEEE, 2017: 2272?2276.
[15] SAMUEL N, DISKIN T, WIESEL A. Learning to detect[J]. IEEE transactions on signal processing, 2019, 67(10): 2554-2564.
[16] 李晓辉, 王维猛, 黑永强. 基于空频相关的大规模MIMO-OFDM系统压缩信道反馈[J]. 电子与信息学报, 2014, 36(5): 1178-1183
LI Xiaohui, WANG Weimeng, HEI Yongqiang. Compressed channel feedback for large-scale MIMO-OFDM systems based on space frequency correlation[J]. Journal of Electronics and Information Technology, 2014, 36(5): 1178-1183
[17] 张博文. 基于自适应深度神经网络的稀疏线性逆问题研究及其在通信系统中的应用[D].北京: 北京交通大学, 2021: 12?29.
ZhANG Bowen. Research on Sparse Linear Inverse Problem Based on Adaptive Deep Neural Networks and Its Application in Communication Systems [D]. Beijing: Beijing Jiaotong University, 2021: 12?29.
[18] QIAN Qipeng, XIONG Fengchao, ZHOU Jun. Deep unfolded iterative shrinkage-thresholding model for hyperspectral unmixing[C]//2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama: IEEE, 2019: 2151?2154.
[19] VAN LUONG H, JOUKOVSKY B, ELDAR Y C, et al. A deep-unfolded reference-based RPCA network for video foreground-background separation[C]//2020 28th European Signal Processing Conference. Amsterdam: IEEE, 2020: 1432?1436.
[20] LIU Jiaming, SUN Yu, GAN Weijie, et al. Stochastic deep unfolding for imaging inverse problems[C]//2021 IEEE International Conference on Acoustics, Speech and Signal Processing. Toronto: IEEE, 2021: 1395?1399.
[21] 马培旗, 袁玉山, 张宗夕, 等. 基于压缩感知技术三维MRI用于半月板损伤[J]. 中国医学影像技术, 2020, 36(10): 1533-1536
MA Peiqi, YUAN Yushan, ZHANG Zongxi, et al. 3D MRI based on compressed sensing technology for meniscus injury[J]. Chinese Medical Imaging Technology, 2020, 36(10): 1533-1536
[22] LIU Yiling, LIU Qiegen, ZHANG Minghui, et al. IFR-net: iterative feature refinement network for compressed sensing MRI[J]. IEEE transactions on computational imaging, 2020, 6: 434-446.
[23] SOLOMON O, COHEN R, ZHANG Yi, et al. Deep unfolded robust PCA with application to clutter suppression in ultrasound[J]. IEEE transactions on medical imaging, 2020, 39(4): 1051-1063.
[24] HERSHEY J R, LE ROUX J, WENINGER F. Deep unfolding: model-based inspiration of novel deep architectures[EB/OL]. (2014?09?09)[2020?01?01]. https://arxiv.org/abs/1409.2574.
[25] GREGOR K, LECUN Y. Learning fast approximations of sparse coding[J]. ICML 2010 - proceedings, 27th international conference on machine learning, 2010: 399?406.
[26] BORGERDING M, SCHNITER P. Onsager-corrected deep learning for sparse linear inverse problems[C]//2016 IEEE Global Conference on Signal and Information Processing. Washington, DC: IEEE, 2017: 227?231.
[27] ITO D, TAKABE S, WADAYAMA T. Trainable ISTA for sparse signal recovery[J]. IEEE transactions on signal processing, 2019, 67(12): 3113-3125.
[28] MONTANARI A. Graphical models concepts in compressed sensing[M]//Compressed Sensing. Cambridge: Cambridge University Press, 2012: 394?438.
[29] BORGERDING M, SCHNITER P, RANGAN S. AMP-inspired deep networks for sparse linear inverse problems[J]. IEEE transactions on signal processing, 2017, 65(16): 4293-4308.
相似文献/References:
[1]赵春晖,刘巍.压缩感知理论及其在成像技术中的应用[J].智能系统学报,2012,7(1):21.
 ZHAO Chunhui,LIU Wei.Compressive sensing theory and its application in imaging technology[J].CAAI Transactions on Intelligent Systems,2012,7():21.
[2]郑晓,薄华,孙强.QR分解与特征值优化观测矩阵的算法研究[J].智能系统学报,2015,10(1):149.[doi:10.3969/j.issn.2013-0934.201309034]
 ZHENG Xiao,BO Hua,SUN Qiang.An algorithm for measurement matrix based on QR decomposition and eigenvalue optimizatio[J].CAAI Transactions on Intelligent Systems,2015,10():149.[doi:10.3969/j.issn.2013-0934.201309034]
[3]唐琳,焦淑红.基于近似消息传递算法的压缩感知雷达成像方法[J].智能系统学报,2015,10(4):592.[doi:10.3969/j.issn.1673-4785.201411025]
 TANG Lin,JIAO Shuhong.Compressed sensing radar imaging using approximate message passing[J].CAAI Transactions on Intelligent Systems,2015,10():592.[doi:10.3969/j.issn.1673-4785.201411025]
[4]史东承,倪康.压缩感知W-HOG特征的运动手势跟踪[J].智能系统学报,2016,11(1):124.[doi:10.11992/tis.201507005]
 SHI Dongcheng,NI Kang.Motion gesture tracking based on compressed sensing W-HOG features[J].CAAI Transactions on Intelligent Systems,2016,11():124.[doi:10.11992/tis.201507005]
[5]张龙,陈宸,韩宁,等.压缩感知理论中的建筑电气系统故障诊断[J].智能系统学报,2014,9(2):204.[doi:10.3969/j.issn.1673-4785.201310026]
 ZHANG Long,CHEN Chen,HAN Ning,et al.Fault diagnosis of electrical systems in buildingsbased on compressed sensing[J].CAAI Transactions on Intelligent Systems,2014,9():204.[doi:10.3969/j.issn.1673-4785.201310026]
[6]李霞丽,吴立成,樊艳明.易于硬件实现的压缩感知观测矩阵的研究与构造[J].智能系统学报,2017,12(3):279.[doi:10.11992/tis.201606037]
 LI Xiali,WU Licheng,FAN Yanming.Study and construction of a compressed sensing measurement matrix that is easy to implement in hardware[J].CAAI Transactions on Intelligent Systems,2017,12():279.[doi:10.11992/tis.201606037]
[7]孙必慎,石武祯,姜峰.计算视觉核心问题:自然图像先验建模研究综述[J].智能系统学报,2019,14(1):71.[doi:10.11992/tis.201804019]
 SUN Bishen,SHI Wuzhen,JIANG Feng.Core problem in computer vision: survey of natural image prior models[J].CAAI Transactions on Intelligent Systems,2019,14():71.[doi:10.11992/tis.201804019]
[8]陶霖密,袁春,王浩达.一种恢复图像自然色彩的重构方法[J].智能系统学报,2019,14(5):877.[doi:10.11992/tis.201805011]
 TAO Linmi,YUAN Chun,WANG Haoda.Reconstruction method for restoring the natural color of an image[J].CAAI Transactions on Intelligent Systems,2019,14():877.[doi:10.11992/tis.201805011]

备注/Memo

收稿日期:2022-4-19。
作者简介:邵凯,副教授,主要研究方向为智能感知与信息系统、信号与信息智能处理。发表学术论文40余篇;闫力力,硕士研究生,主要研究方向为深度学习在压缩感知中的应用;王光宇,教授,主要研究方向为数字信号处理、滤波器组理论。出版学术专著2部,发表学术论文30余篇
通讯作者:邵凯.E-mail:shaokai@cqupt.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com