[1]王瑞婷,王海燕,陈晓,等.基于混合卷积与三重注意力的高光谱图像分类网络[J].智能系统学报,2023,18(2):260-269.[doi:10.11992/tis.202204002]
 WANG Ruiting,WANG Haiyan,CHEN Xiao,et al.Hyperspectral image classification based on hybrid convolutional neural network with triplet attention[J].CAAI Transactions on Intelligent Systems,2023,18(2):260-269.[doi:10.11992/tis.202204002]
点击复制

基于混合卷积与三重注意力的高光谱图像分类网络

参考文献/References:
[1] 王锦锦, 李真, 朱玉玲. 高光谱影像在海洋环境监测中的应用[J]. 卫星应用, 2019(8): 36–40
[2] 高暖. 高光谱图像地物及目标识别[D]. 西安: 西安电子科技大学, 2019: 1?5.
GAO Nuan. Terrain and target detection in hyperspectral remote sensing imagery[D]. Xi’an: Xidian University, 2019: 1?5.
[3] HUGHES G. On the mean accuracy of statistical pattern recognizers[J]. IEEE transactions on information theory, 1968, 14(1): 55–63.
[4] BLANZIERI E, MELGANI F. Nearest neighbor classification of remote sensing images with the maximal margin principle[J]. IEEE transactions on geoscience and remote sensing, 2008, 46(6): 1804–1811.
[5] TARABALKA Y, FAUVEL M, CHANUSSOT J, et al. SVM- and MRF-based method for accurate classification of hyperspectral images[J]. IEEE geoscience and remote sensing letters, 2010, 7(4): 736–740.
[6] 陈善学, 何宇峰. 基于空谱字典的加权联合稀疏表示高光谱图像分类[J]. 光学学报, 2023, 43(1): 0110002–1-11
CHEN Shanxue, HE Yufeng. Weighted joint sparse representation hyperspectral image classification based on spatial-spectral diction[J]. Acta optica sinica, 2023, 43(1): 0110002–1-11
[7] 熊余, 单德明, 姚玉, 等. 多特征融合下的高光谱图像混合卷积分类[J]. 红外技术, 2022, 44(1): 9–20
XIONG Yu, SHAN Deming, YAO Yu, et al. Hyperspectral image hybrid convolution classification under multi-feature fusion[J]. Infrared technology, 2022, 44(1): 9–20
[8] FAUVEL M, TARABALKA Y, BENEDIKTSSON J A, et al. Advances in spectral-spatial classification of hyperspectral images[J]. Proceedings of the IEEE, 2013, 101(3): 652–675.
[9] ZHONG Ping, GONG Zhiqiang. A hybrid DBN and CRF model for spectral-spatial classification of hyperspectral images[J]. Statistics, optimization & information computing, 2017, 5(2): 75–98.
[10] LIU Jinxiang, ZHANG Kefei, WU Suqin, et al. An investigation of a multidimensional CNN combined with an attention mechanism model to resolve small-sample problems in hyperspectral image classification[J]. Remote sensing, 2022, 14(3): 785.
[11] HU Wei, HUANG Yangyu, WEI Li, et al. Deep convolutional neural networks for hyperspectral image classification[J]. Journal of sensors, 2015, 2015: 258619.
[12] XU Xiaodong, LI Wei, RAN Qiong, et al. Multisource remote sensing data classification based on convolutional neural network[J]. IEEE transactions on geoscience and remote sensing, 2018, 56(2): 937–949.
[13] ZHANG Xin, WANG Yongcheng, ZHANG Ning, et al. SSDANet: spectral-spatial three-dimensional convolutional neural network for hyperspectral image classification[J]. IEEE access, 2020, 8: 127167–127180.
[14] GUO Hao, LIU Jianjun, YANG Jinlong, et al. Deep collaborative attention network for hyperspectral image classification by combining 2-D CNN and 3-D CNN[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2020, 13: 4789?4802.
[15] HU Jie, SHEN Li, SUN Gang. Squeeze-and-excitation networks[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132?7141.
[16] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[M]//Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2018: 3?19.
[17] FANG Bei, LI Ying, ZHANG Haokui, et al. Hyperspectral images classification based on dense convolutional networks with spectral-wise attention mechanism[J]. Remote sensing, 2019, 11(2): 159.
[18] ROY S K, MANNA S, SONG Tiecheng, et al. Attention-based adaptive spectral-spatial kernel ResNet for hyperspectral image classification[J]. IEEE transactions on geoscience and remote sensing, 2021, 59(9): 7831–7843.
[19] AHMAD M, KHAN A M, MAZZARA M, et al. Attention mechanism meets with hybrid dense network for hyperspectral image classification[EB/OL].(2022?01?04)[2022?12?12].https://arxiv.org/abs/2201.01001.
[20] CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 1800?1807.
[21] CUI Ying, YU Zikun, HAN Jiacheng, et al. Dual-triple attention network for hyperspectral image classification using limited training samples[J]. IEEE geoscience and remote sensing letters, 2022, 19: 1–5.
[22] 李昌元, 刘国栋, 谭博. 基于PCA和KPCA的高光谱遥感数据降维对比研究[J]. 地理空间信息, 2022, 20(7): 89–93,103
LI Changyuan, LIU Guodong, TAN Bo. Comparative study on hyperspectral remote sensing data dimensionality reduction based on PCA and KPCA[J]. Geospatial information, 2022, 20(7): 89–93,103
[23] MELGANI F, BRUZZONE L. Classification of hyperspectral remote sensing images with support vector machines[J]. IEEE transactions on geoscience and remote sensing, 2004, 42(8): 1778–1790.
[24] CHEN Yushi, JIANG Hanlu, LI Chunyang, et al. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks[J]. IEEE transactions on geoscience and remote sensing, 2016, 54(10): 6232–6251.
[25] ZHONG Zilong, LI J, LUO Zhiming, et al. Spectral-spatial residual network for hyperspectral image classification: a 3-D deep learning framework[J]. IEEE transactions on geoscience and remote sensing, 2018, 56(2): 847–858.
[26] ROY S K, KRISHNA G, DUBEY S R, et al. HybridSN: exploring 3-D–2-D CNN feature hierarchy for hyperspectral image classification[J]. IEEE geoscience and remote sensing letters, 2020, 17(2): 277–281.
[27] 王爱丽, 刘美红, 薛冬, 等. 结合动态卷积和三重注意力机制的高光谱图像分类[J]. 激光与光电子学进展, 2022, 59(10): 341–351
WANG Aili, LIU Meihong, XUE Dong, et al. Hyperspectral image classification combined dynamic convolution with triplet attention mechanism[J]. Laser & optoelectronics progress, 2022, 59(10): 341–351
[28] ZHANG Yangming, YANG Kun, YUAN Lei. A hyperspectral image classification method with CNN based on attention-enhanced spectral and spatial features[J]. Journal of physics:conference series, 2021, 2006(1): 012033.
相似文献/References:
[1]陈立伟,房赫,朱海峰.多视图主动学习的多样性样本选择方法研究[J].智能系统学报,2021,16(6):1007.[doi:10.11992/tis.202007037]
 CHEN Liwei,FANG He,ZHU Haifeng.Diversity sample selection method of multiview active learning classification[J].CAAI Transactions on Intelligent Systems,2021,16():1007.[doi:10.11992/tis.202007037]

备注/Memo

收稿日期:2022-04-02。
基金项目:国家自然科学基金重点项目(62031021).
作者简介:王瑞婷,硕士研究生,主要研究方向为复杂环境智能信息感知;王海燕,教授,博士生导师,主要研究方向为智能感知技术。负责国家自然基金、国家科技重大专项、国家863计划等项目20余项,发表学术论文80余篇;陈晓,讲师,主要研究方向为多目标跟踪理论和AI技术
通讯作者:王海燕. E-mail:hywang@sust.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com