[1]张智慧,杨燕,张熠玲.面向不完整多视图聚类的深度互信息最大化方法[J].智能系统学报,2023,18(1):12-22.[doi:10.11992/tis.202203051]
 ZHANG Zhihui,YANG Yan,ZHANG Yiling.Deep mutual information maximization method for incomplete multi-view clustering[J].CAAI Transactions on Intelligent Systems,2023,18(1):12-22.[doi:10.11992/tis.202203051]
点击复制

面向不完整多视图聚类的深度互信息最大化方法

参考文献/References:
[1] 赵博宇, 张长青, 陈蕾, 等. 生成式不完整多视图数据聚类[J]. 自动化学报, 2021, 47(8): 1867–1875
ZHAO Boyu, ZHANG Changqing, CHEN Lei, et al. Generative model for partial multi-view clustering[J]. Acta automatica sinica, 2021, 47(8): 1867–1875
[2] 张熠玲, 杨燕, 周威, 等. CMvSC: 知识迁移下的深度一致性多视图谱聚类网络[J]. 软件学报, 2022, 33(4): 1373–1389
ZHANG Yiling, YANG Yan, ZHOU Wei, et al. CMvSC: knowledge transferring based deep consensus network for multi-view spectral clustering[J]. Journal of software, 2022, 33(4): 1373–1389
[3] SHAO Weixiang, HE Lifang, YU P S. Multiple incomplete views clustering via weighted nonnegative matrix factorization with L2, 1 regularization[M]//Machine Learning and Knowledge Discovery in Databases. Cham: Springer International Publishing, 2015: 318?334.
[4] YIN Qiyue, WU Shu, WANG Liang. Incomplete multi-view clustering via subspace learning[C]//Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. Melbourne: ACM, 2015: 383?392.
[5] WANG HAO, ZONG LINLIN, LIU BING, et al. Spectral perturbation meets incomplete multi-view data[EB/OL]. (2019?03?31)[2022?03?23].https://arxiv.org/abs/1906.00098.
[6] HU MENGLEI, CHEN SONGCAN. Doubly aligned incomplete multi-view clustering[EB/OL]. (2019?03?07)[2022?03?23].https://arxiv.org/abs/1903.02785.
[7] LI Shaoyuan, JIANG Yuan, ZHOU Zhihua. Partial multi-view clustering[C]//Proceedings of the AAAI conference on artificial intelligence. Québec: AAAI Press, 2014, 28(1): 1968?1974.
[8] HUANG Zhenyu, ZHOU Tianyi, PENG Xi, et al. Multi-view spectral clustering network[C]//Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence. Macao: International Joint Conferences on Artificial Intelligence Organization, 2019: 2563?2569.
[9] SUN Xiukun, CHENG Miaomiao, CHEN Min, et al. Self-supervised deep multi-view subspace clustering [C]//Proceedings of the 8th Asian Conference on Machine Learning. Nagoya: PMLR, 2019: 1001?1016.
[10] ZHANG Changqing, FU Huazhu, HU Qinghua, et al. Generalized latent multi-view subspace clustering[J]. IEEE transactions on pattern analysis and machine intelligence, 2020, 42(1): 86–99.
[11] ZHANG Changqing, LIU Yeqing, FU Huazhu. AE2-nets: autoencoder in autoencoder networks[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 2572?2580.
[12] ZHANG Changqing, CUI Yajie, HAN Zongbo, et al. Deep partial multi-view learning[J]. IEEE transactions on pattern analysis and machine intelligence, 2022, 44(5): 2402–2415.
[13] PAN Erlin, ZHAO Kang. Multi-view Contrastive Graph Clustering[J]. Advances in neural information processing systems, 2021, 34: 2148–2159.
[14] WAN Zhibin, ZHANG Changqing, ZHU Pengfei, et al. Multi-view information-bottleneck representation learning[C]//Proceedings of the AAAI conference on artificial intelligence. Van couver: AAAI Press, 2021, 35(11): 10085?10092.
[15] SHAHAM U, STANTON K, LI H, et al. Spectralnet: Spectral clustering using deep neural networks[EB/OL]. (2018?01?04) [2022?03?23].https://arxiv.org/abs/18012021.
[16] PAN Ji, ZHANG Tong, LI Hongdong, et al. Deep subspace clustering networks[J]. Advances in neural information processing systems, 2017: 30.
[17] ZHONG HUASONG, CHEN CHONG, JIN ZHONGMING, et al. Deep robust clustering by contrastive learning[EB/OL]. (2020?08?07)[2022?03?23].https://arxiv.org/abs/2008.03030.
[18] MACQUEEN J. Classification and analysis of multivariate observations[C]//Fifth Berkeley Symposium on Mathematical Statistics and Probability. Berkeley: The Regents of the University of California, 1967: 281?297.
[19] KUMAR M P, PACKER B, KOLLER D. Self-paced learning for latent variable models[C]// Advances in neural information processing systems. NIPS, 2010.
[20] BENGIO Y, LOURADOUR J, COLLOBERT R, et al. Curriculum learning[C]//ICML’09: Proceedings of the 26th Annual International Conference on Machine Learning. New York: ACM, 2009: 41?48.
[21] HU Menglei, CHEN Songcan. One-pass incomplete multi-view clustering[C]//Proceedings of the AAAI conference on artificial intelligence. Honolulu, AAAI Press: 2019, 33: 3838?3845.
[22] ZHAO Liang, CHEN Zhikui, YANG Yi, et al. Incomplete multi-view clustering via deep semantic mapping[J]. Neurocomputing, 2018, 275: 1053–1062.
[23] 刘相男, 丁世飞, 王丽娟. 基于深度图正则化矩阵分解的多视图聚类算法[J]. 智能系统学报, 2022, 17(1): 158–169
LIU Xiangnan, DING Shifei, WANG Lijuan. A multi-view clustering algorithm based on deep matrix factorization with graph regularization[J]. CAAI transactions on intelligent systems, 2022, 17(1): 158–169
[24] 郭圣, 仲兆满, 李存华. 基于深度自编码的多视图子空间聚类网络[J]. 计算机工程与应用, 2020, 56(17): 60–68
GUO Sheng, ZHONG Zhaoman, LI Cunhua. Multi-view subspace clustering network based on deep autoencoder[J]. Computer engineering and applications, 2020, 56(17): 60–68
[25] LIN Yijie, GOU Yuanbiao, LIU Zitao, et al. COMPLETER: incomplete multi-view clustering via contrastive prediction[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 11169?11178.
[26] GE Yixiao, ZHU Feng, CHEN Dapeng, et al. Self-paced contrastive learning with hybrid memory for domain adaptive object re-id[J]. Advances in neural information processing systems, 2020, 33: 11309?11321.
[27] JIANG Lu, MENG Deyu, ZHAO Qian, et al. Self-paced curriculum learning[C]//Proceedings of the AAAI conference on artificial intelligence. Buenos Aires: AAAI Press, 2015, 29(1).
[28] CHU Guanyi, WANG Xiao, SHI Chuan, et al. CuCo: graph representation with curriculum contrastive learning[C]//Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2021: 2300?2306.
[29] PENG Jizong, WANG Ping, DESROSIERS C, et al. Self-paced contrastive learning for semi-supervised medical image segmentation with meta-labels[J]. Advances in neural information processing systems, 2021, 34: 16686–16699.
[30] 许子微, 陈秀宏. 自步稀疏最优均值主成分分析[J]. 智能系统学报, 2021, 16(3): 416–424
XU Ziwei, CHEN Xiuhong. Sparse optimal mean principal component analysis based on self-paced learning[J]. CAAI transactions on intelligent systems, 2021, 16(3): 416–424
[31] WANG Weiran, RAMAN Arora, LIVESCU, K, et al. On deep multi-view representation learning[C]//Proceedings of the 32nd International Conference on Machine Learning. Lille: PMLR, 2015: 1083?1092.
[32] ANDREW G, ARORA R, BILMES J, et al. Deep canonical correlation analysis[C]//ICML’13: Proceedings of the 30th International Conference on International Conference on Machine Learning-Volume 28. New York: ACM, 2013: 1247–1255.
[33] ZHANG Zheng, LIU Li, SHEN Fumin, et al. Binary multi-view clustering[J]. IEEE transactions on pattern analysis and machine intelligence, 2019, 41(7): 1774–1782.
[34] LIU Xinwang, LI Miaomiao, TANG Chang, et al. Efficient and effective regularized incomplete multi-view clustering[J]. IEEE transactions on pattern analysis and machine intelligence, 2021, 43(8): 2634–2646.
[35] ZHANG Handong, LIU Hongfu, FU Yun. Incomplete multi-modal visual data grouping[C]// International Joint Conference on Artificial Intelligence. New York: AAAI, 2016: 2392?2398.
[36] WEN Jie, ZHANG Zheng, XU Yong, et al. Unified embedding alignment with missing views inferring for incomplete multi-view clustering[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Honolulu: AAAI, 2019: 5393?5400.
[37] VAN der Maaten L, HINTON G. Visualizing data using t-SNE[J]. Journal of machine learning research, 2008, 9(11): 2579?2605.
相似文献/References:
[1]张继福,张素兰,胡立华.约束概念格及其构造方法[J].智能系统学报,2006,1(2):31.
 ZHANG Ji-fu,ZHANG Su-lan,HU Li-hua.Constrained concept lattice and its construction method[J].CAAI Transactions on Intelligent Systems,2006,1():31.
[2]王国胤,张清华,胡? 军.粒计算研究综述[J].智能系统学报,2007,2(6):8.
 WANG Guo-yin,ZHANG Qing-hua,HU Jun.An overview of granular computing[J].CAAI Transactions on Intelligent Systems,2007,2():8.
[3]杨小兵,何灵敏,孔繁胜.切换回归模型的抗噪音聚类算法[J].智能系统学报,2009,4(6):497.[doi:10.3969/j.issn.1673-4785.2009.06.005]
 YANG Xiao-bing,HE Ling-min,KONG Fan-sheng.A noise-resistant clustering algorithm for switching regression models[J].CAAI Transactions on Intelligent Systems,2009,4():497.[doi:10.3969/j.issn.1673-4785.2009.06.005]
[4]季瑞瑞,刘?? 丁.支持向量数据描述的基因表达数据聚类方法[J].智能系统学报,2009,4(6):544.[doi:10.3969/j.issn.1673-4785.2009.06.013]
 JI Rui-rui,LIU Ding.Improved gene expression data clustering using a support vector domain description algorithm[J].CAAI Transactions on Intelligent Systems,2009,4():544.[doi:10.3969/j.issn.1673-4785.2009.06.013]
[5]张秀玲,逄宗鹏,李少清,等.ANFIS的板形控制动态影响矩阵方法[J].智能系统学报,2010,5(4):360.
 ZHANG Xiu-ling,PANG Zong-peng,LI Shao-qing,et al.A dynamic influence matrix method for flatness control based on adaptivenetworkbased fuzzy inference systems[J].CAAI Transactions on Intelligent Systems,2010,5():360.
[6]李伟,杨晓峰,张重阳,等.复杂网络社团的投影聚类划分[J].智能系统学报,2011,6(1):57.
 LI Wei,YANG Xiaofeng,ZHANG Chongyang,et al.A clustering method for community detection on complex networks[J].CAAI Transactions on Intelligent Systems,2011,6():57.
[7]陈岳峰,苗夺谦,李文,等.基于概念的词汇情感倾向识别方法[J].智能系统学报,2011,6(6):489.
 CHEN Yuefeng,MIAO Duoqian,LI Wen,et al.Semantic orientation computing based on concepts[J].CAAI Transactions on Intelligent Systems,2011,6():489.
[8]何清.物联网与数据挖掘云服务[J].智能系统学报,2012,7(3):189.
 HE Qing.The Internet of things and the data mining cloud service[J].CAAI Transactions on Intelligent Systems,2012,7():189.
[9]方然,苗夺谦,张志飞.一种基于情感的中文微博话题检测方法[J].智能系统学报,2013,8(3):208.
 FANG Ran,MIAO Duoqian,ZHANG Zhifei.An emotion-based method of topic detection from Chinese microblogs[J].CAAI Transactions on Intelligent Systems,2013,8():208.
[10]李海林,郭韧,万校基.基于特征矩阵的多元时间序列最小距离度量方法[J].智能系统学报,2015,10(3):442.[doi:10.3969/j.issn.1673-4785.201405047]
 LI Hailin,GUO Ren,WAN Xiaoji.A minimum distance measurement method for amultivariate time series based on the feature matrix[J].CAAI Transactions on Intelligent Systems,2015,10():442.[doi:10.3969/j.issn.1673-4785.201405047]
[11]刘大莲,田英杰.可拓数据挖掘在学生成绩分析中的应用研究[J].智能系统学报,2022,17(4):707.[doi:10.11992/tis.202112020]
 LIU Dalian,TIAN Yingjie.Application of extension data mining in student achievement analysis[J].CAAI Transactions on Intelligent Systems,2022,17():707.[doi:10.11992/tis.202112020]

备注/Memo

收稿日期:2022-03-24。
基金项目:国家自然科学基金项目(61976247).
作者简介:张智慧,硕士研究生,主要研究方向为数据挖掘和多视图聚类;杨燕,教授,博士生导师,博士,四川省学术和技术带头人,CCF杰出会员,主要研究方向为人工智能、大数据分析与挖掘、集成学习、多视图学习、聚类分析和时空挖掘。主持承担国家自然科学基金等科技项目10余项。发表学术论文230余篇,入选2021年度中国百篇最具国际影响力学术论文1篇;张熠玲,博士,主要研究方向为多视图学习、多任务学习、聚类分析和时空挖掘
通讯作者:杨燕.E-mail:yyang@swjtu.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com