[1]车飞虎,张大伟,邵朋朋,等.基于四元数门控图神经网络的脚本事件预测[J].智能系统学报,2023,18(1):138-143.[doi:10.11992/tis.202203042]
CHE Feihu,ZHANG Dawei,SHAO Pengpeng,et al.Script event prediction based on a quaternion-gated graph neural network[J].CAAI Transactions on Intelligent Systems,2023,18(1):138-143.[doi:10.11992/tis.202203042]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
18
期数:
2023年第1期
页码:
138-143
栏目:
学术论文—自然语言处理与理解
出版日期:
2023-01-05
- Title:
-
Script event prediction based on a quaternion-gated graph neural network
- 作者:
-
车飞虎1,2, 张大伟1, 邵朋朋1,2, 杨国花1, 刘通1, 陶建华1,2,3
-
1. 中国科学院自动化研究所 模式识别国家重点实验室, 北京 100190;
2. 中国科学院大学 人工智能学院, 北京100049;
3. 中国科学院脑科学与智能技术卓越中心, 北京100190
- Author(s):
-
CHE Feihu1,2, ZHANG Dawei1, SHAO Pengpeng1,2, YANG Guohua1, LIU Tong1, TAO Jianhua1,2,3
-
1. National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China;
2. School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China;
3. CAS Center for Excellence in Brain Science and Intelligence Technology, Beijing 100190, China
-
- 关键词:
-
四元数; 门控图神经网络; 事件表示; 脚本事件预测; 注意力机制; 事理图谱; 图神经网络; 事件交互
- Keywords:
-
quaternion; gated graph neural network; event representation; script event prediction; attention mechanism; event evolutionary graph; graph convolution networks; event interaction
- 分类号:
-
TP183
- DOI:
-
10.11992/tis.202203042
- 摘要:
-
脚本事件预测需要考虑两类信息来源:事件间的关联与事件内的交互。针对于事件间的关联,采用门控图神经网络对其进行建模。而对于事件内的交互,采用四元数对事件进行表征,接着通过四元数的哈密顿乘积来捕捉事件4个组成部分之间的交互。提出结合四元数和门控图神经网络来学习事件表示,它既考虑了外部事件图的交互作用,又考虑了事件内部的依赖关系。得到事件表示后,利用注意机制学习上下文事件表示和每个候选上下文表示的相对权值。然后通过权重计算上下文事件表示的和,再计算其与候选事件表示的欧氏距离。最后选择距离最小的候选事件作为正确的候选事件。在纽约时报语库上进行了实验,结果表明,通过多项选择叙事完形填空评价,本文的模型优于现有的基线模型
- Abstract:
-
Two types of information sources are essential for script event prediction: the correlation between events and the inner interactions within one event. For the first information source, we use a gated graph neural network to model the correlation between events. For the inner interactions within one event, we use quaternion to model the event, and then we use the Hamilton product of quaternion to capture the inner interactions of four components. We propose to learn event representation by combining quaternion and a gated graph neural network. This approach considers the interaction of external event diagrams and the dependence within an event. After obtaining the event representation, we use an attention mechanism to learn the context event representation and the relative weight of each candidate context representation. Next, we calculate the sum of the context event embeddings through the weights, and then we calculate the Euclidean distance between the context event embedding sum and the candidate event embedding. Finally, we choose the candidate event with the smallest distance as the right candidate event. The results of experiments conducted on the New York Times corpus show that our proposed model is superior to the existing state-of-the-art baseline models through evaluation using a multiple-choice narrative cloze test.
备注/Memo
收稿日期:2022-03-23。
基金项目:国家自然科学基金项目(61831022,61901473).
作者简介:车飞虎,博士研究生,主要研究方向为机器学习与数据挖掘;张大伟,副研究员,主要研究方向为模式识别、自然语言处理与知识推理;陶建华,研究员,主要研究方向为语音合成、模式识别、数据挖掘。先后负责和参与国家级项目40余项。主要研究方向为语音合成,模式识别,数据挖掘
通讯作者:陶建华.E-mail:jhtao@nlpr.ia.ac.cn
更新日期/Last Update:
1900-01-01