[1]吴立成,吴启飞,钟宏鸣,等.基于卷积神经网络的“拱猪”博弈算法[J].智能系统学报,2023,18(4):775-782.[doi:10.11992/tis.202203030]
WU Licheng,WU Qifei,ZHONG Hongming,et al.Algorithm for “Hearts” game based on convolutional neural network[J].CAAI Transactions on Intelligent Systems,2023,18(4):775-782.[doi:10.11992/tis.202203030]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
18
期数:
2023年第4期
页码:
775-782
栏目:
学术论文—智能系统
出版日期:
2023-07-15
- Title:
-
Algorithm for “Hearts” game based on convolutional neural network
- 作者:
-
吴立成, 吴启飞, 钟宏鸣, 王世尧, 李霞丽
-
中央民族大学 信息工程学院, 北京 100081
- Author(s):
-
WU Licheng, WU Qifei, ZHONG Hongming, WANG Shiyao, LI Xiali
-
School of Information Engineering, Minzu University of China, Beijing 100081, China
-
- 关键词:
-
人工智能; 非完备信息博弈; 深度学习; 卷积神经网络; 拱猪; 华牌; 亮牌; 出牌
- Keywords:
-
artificial intelligence; game of incomplete information; deep learning; convolutional neural network; Hearts; Chinese card game; card-showing; card-playing
- 分类号:
-
TP183;G892
- DOI:
-
10.11992/tis.202203030
- 摘要:
-
“拱猪”又称“华牌”,是一款极具特点的牌类游戏,属于非完备信息博弈,由亮牌和出牌2个阶段组成,整个游戏过程具有极强的反转性。为了研究“拱猪”计算机博弈算法,本文提出了一种基于深度学习的“拱猪”博弈算法,包含亮牌和出牌2个神经网络,分别用于亮牌和出牌阶段。亮牌和出牌网络均采用卷积神经网络(convolutional neural network,CNN)来构建,根据功能特点分别设计为不同的网络结构。采用11000局人类高级玩家的真实牌谱按比例生成训练数据和测试数据,对2个CNN网络进行了训练、测试和分析。结果表明,亮牌和出牌网络分别达到了88.4%和71.4%的准确率。对亮牌和出牌的一些具体例子进行的分析表明,本文算法能够产生合理的亮牌和出牌策略。
- Abstract:
-
“Hearts”, also known as “Chinese card game”, is a very characteristic poker game, which belongs to incomplete information games. It consists of two stages of card showdown and card playing, and there is strong reversality throughout the game. In order to study the computer game algorithm of “Hearts”, this paper proposes a “Hearts” game algorithm based on deep learning, which includes two neural networks, namely, card showdown and card playing, which are used in card showdown and card playing stage respectively. Both the card showdown network and card playing network are constructed by convolutional neural network (CNN), which are designed into different network structures according to their functional characteristics. Two CNN networks are trained, tested, and analyzed by using the real card playing patterns of 11,000 human advanced players to generate training data and test data proportionally. The results show that the accuracy of card showdown and card playing network reaches 88.4% and 71.4% respectively. The analysis of some specific examples of card showdown and card playing shows that the algorithm is able to produce reasonable card showdown and card playing strategies.
备注/Memo
收稿日期:2022-03-17。
基金项目:国家自然科学基金项目(61773416,61873291).
作者简介:吴立成,教授,博士生导师,国家民委首批中青年英才培养计划,主要研究方向为智能机器人、计算机博弈、计算语言学。主持国家自然科学基金项目、863项目等10余项,授权发明专利4项,获教育部科技进步二等奖1项、江苏省科技进步三等奖1项。发 表学术论文100余篇,出版专著1部、 教材1部、译著1部。;吴启飞,硕士研究生,主要研究方向为计算机博弈;李霞丽,教授,主要研究方向为机器博弈。主持国家自然科学基金面上项目2项、国家自然科学基金青年项目1项、省部级项目1项,获得北京市高等学校青年英才计划奖励1项,授权发明专利和登记软件著作权10余项。发表学术论文近60篇。
通讯作者:李霞丽.E-mail:xiaer_li@163.com
更新日期/Last Update:
1900-01-01