[1]王鑫琦,朱齐丹.基于输出误差模型优化的甲板运动预报算法研究[J].智能系统学报,2023,18(1):75-85.[doi:10.11992/tis.202203012]
WANG Xinqi,ZHU Qidan.Research on deck motion prediction algorithm based on output error model optimization[J].CAAI Transactions on Intelligent Systems,2023,18(1):75-85.[doi:10.11992/tis.202203012]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
18
期数:
2023年第1期
页码:
75-85
栏目:
学术论文—智能系统
出版日期:
2023-01-05
- Title:
-
Research on deck motion prediction algorithm based on output error model optimization
- 作者:
-
王鑫琦, 朱齐丹
-
哈尔滨工程大学 智能科学与工程学院,黑龙江 哈尔滨 150001
- Author(s):
-
WANG Xinqi, ZHU Qidan
-
College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China
-
- 关键词:
-
大型舰船; 甲板极短期运动预报; 时间滞后; 模型最优阶数数对; 系统参数辨识; 输出误差模型; 状态变量; 辅助模型最小二乘算法
- Keywords:
-
large ship; very short-term deck motion prediction; time lag; optimal order pair of the model; system parameter identification; output error model; state variables; auxiliary model recursive least squares algorithm
- 分类号:
-
TP391.4
- DOI:
-
10.11992/tis.202203012
- 摘要:
-
本文提出了一种适用于多种复杂海况的大型舰船甲板运动预报方法,目的在于提高算法对不同海域复杂海况的适用性,以及对甲板运动模型的辨识精度与预报精度。该方法通过将量测数据的时间滞后处理引入输出误差模型来描述甲板运动的动力学模型,引入定阶准则确定了模型最优阶数数对。在此基础上应用了辅助模型递推最小二乘算法进行系统参数辨识并估计输出误差模型中的状态变量。实验结果表明,本文所提出的预报方法在系统参数辨识阶段可以将递推最小二乘算法的辨识精度提高5.13%,并且在预报阶段可以有效地将甲板运动的幅值与相位预测精度提高3.17%。该方法在复杂海况下具备良好的预测性能,适用于大型舰船甲板运动预报。
- Abstract:
-
This paper presents a method for large ship deck motion prediction for many complex sea conditions, with the purpose of improving the applicability to complex sea conditions in different seas, as well as the recognition and prediction accuracy of the deck motion model. The method describes the dynamics of the deck motion by introducing a time lag processing of the measurement data into the output error model. And the order estimation criterion is introduced to determine the optimal order pair of the model. The auxiliary model recursive least squares (AM-RLS) algorithm is applied to identify the system parameters and estimate the state variables in the output error model. The experimental result shows that the proposed prediction method can improve accuracy of the recursive least squares algorithm by 5.13% in the system parameter identification period and can effectively improve the prediction accuracy of the deck motion’s amplitude and phase by 3.17% in the prediction period. The method has good prediction performance under complex sea conditions and is suitable for the large ship deck motion prediction.
备注/Memo
收稿日期:2022-03-07。
基金项目:国家自然科学基金项目(52171299).
作者简介:王鑫琦,硕士研究生,主要研究方向为舰载机全自动着舰引导、甲板运动预报、系统参数辨识;朱齐丹,教授,博士生导师,中国自动化学会应用委员会委员,国家绕月探测科学应用专家委员会专家,主要研究方向为机器人与智能控制、机器视觉检测技术、先进控制理论及应用和复杂系统分析与决策。作为项目负责人承担各类型科研项目近30项,其中主要项目包括国家自然科学基金项目3项,国家计划项目5项等。发表学术论文200余篇
通讯作者:朱齐丹.E-mail:zhuqidan@hrbeu.edu.cn
更新日期/Last Update:
1900-01-01