[1]吴晗,王士同.不完整数据分类与缺失信息重要性识别特权LSSVM[J].智能系统学报,2023,18(4):743-753.[doi:10.11992/tis.202202026]
 WU Han,WANG Shitong.Privileged LSSVM for classification and simultaneous importance identification of missing information on incomplete data[J].CAAI Transactions on Intelligent Systems,2023,18(4):743-753.[doi:10.11992/tis.202202026]
点击复制

不完整数据分类与缺失信息重要性识别特权LSSVM

参考文献/References:
[1] GARCíA-LAENCINA P J, SANCHO-GóMEZ J L, FIGUEIRAS-VIDAL A R. Pattern classification with missing data: a review[J]. Neural computing and applications, 2010, 19(2): 263–282.
[2] WANG Guanjin, DENG Zhaohong, CHOI K S. Tackling missing data in community health studies using additive LS-SVM classifier[J]. IEEE journal of biomedical and health informatics, 2016, 22(2): 579–587.
[3] BATISTA G E A P A, MONARD M C. An analysis of four missing data treatment methods for supervised learning[J]. Applied artificial intelligence, 2003, 17(5/6): 519–533.
[4] MOON T K. The expectation-maximization algorithm[J]. IEEE signal processing magazine, 1996, 13(6): 47?60.
[5] DEMPSTER A P, LAIRD N M, RUBIN D B. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the royal statistical society series B: statistical methodology, 1977, 39(1): 1?22.
[6] HORTON N J, KLEINMAN K P. Much ado about nothing[J]. The American statistician, 2007, 61(1): 79?90.
[7] IBRAHIM J G, CHEN M H, LIPSITZ S R. Monte Carlo EM for missing covariates in parametric regression models[J]. Biometrics, 1999, 55(2): 591?596.
[8] 仝伯兵, 王士同, 梅向东. 稀疏条件下的两层分类算法[J]. 智能系统学报, 2015, 10(1): 27–36
TONG Bobing, WANG Shitong, MEI Xiangdong. Sparsity-inspired two-level classification algorithm[J]. CAAI transactions on intelligent systems, 2015, 10(1): 27–36
[9] GARCíA-LAENCINA P J, SERRANO J, FIGUEIRAS-VIDAL A R, et al. Multi-task neural networks for dealing with missing inputs[M]. Berlin: Springer Berlin Heidelberg, 2007: 282?291.
[10] TROYANSKAYA O, CANTOR M, SHERLOCK G, et al. Missing value estimation methods for DNA microarrays[J]. Bioinformatics (Oxford, England), 2001, 17(6): 520?525.
[11] JUSZCZAK P, DUIN R P W. Combining one-class classifiers to classify missing data[M]. Berlin: Springer Berlin Heidelberg, 2004: 92?101.
[12] JIANG Kai, CHEN Haixia, YUAN Senmiao. Classification for incomplete data using classifier ensembles[C]//2005 International Conference on Neural Networks and Brain. Piscataway: IEEE, 2006: 559?563.
[13] KRAUSE S, POLIKAR R. An ensemble of classifiers approach for the missing feature problem[C]//Proceedings of the International Joint Conference on Neural Networks. Piscataway: IEEE, 2003: 553?558.
[14] CHOUDHURY S J, PALN R. Imputation of missing data with neural networks for classification[J]. Knowledge-based systems, 2019, 182: 104838
[15] 卞则康, 王士同. 基于混合距离学习的鲁棒的模糊C均值聚类算法[J]. 智能系统学报, 2017, 12(4): 450–458
BIAN Zekang, WANG Shitong. Robust FCM clustering algorithm based on hybrid-distance learning[J]. CAAI transactions on intelligent systems, 2017, 12(4): 450–458
[16] VAPNIK V, VASHIST A. A new learning paradigm: learning using privileged information[J]. Neural networks, 2009, 22(5/6): 544?557.
[17] SUYKENS J A K, VANDEWALLE J. Chaos control using least-squares support vector machines[J]. International journal of circuit theory and applications, 1999, 27(6): 605?615.
[18] PELCKMANS K, GOETHALS I, BRABANTER J D, et al. Componentwise least squares support vector machines[M]. Berlin: Springer Berlin Heidelberg, 2005: 77?98.
[19] 李欢, 王士同. 支持向量机的多观测样本二分类算法[J]. 智能系统学报, 2014, 9(4): 392–400
LI Huan, WANG Shitong. Binary-class classification algorithm with multiple-access acquired objects based on the SVM[J]. CAAI transactions on intelligent systems, 2014, 9(4): 392–400
[20] MAJI S, BERG A C, MALIK J. Efficient classification for additive kernel SVMs[J]. IEEE transactions on pattern analysis and machine intelligence, 2013, 35(1): 66?77.
[21] DEMIR B, BRUZZONE L. Fast and accurate image classification with histogram based features and additive kernel SVM[C]//2015 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE, 2015: 2350?2353.
[22] 王旭凤. 基于可加性核的快速支持向量机分类算法的研究[D]. 西安:西安电子科技大学, 2017.
WANG Xufeng. Fast support vector machine classification algorithm with additive kernel [D]. Xi’an: Xi’an University of Electronic Science and technology, 2017.
[23] XUE Li. Robust learning with imperfect privileged information[J]. Artificial intelligence, 2020, 282: 103246.
[24] XU Xinxing, LI Wen, XU Dong. Distance metric learning using privileged information for face verification and person re-identification[J]. IEEE transactions on neural networks and learning systems, 2015, 26(12): 3150?3162.
[25] PAL A, KHEMCHANDANI R R N. Learning TWSVM using privilege information[C]//2018 IEEE Symposium Series on Computational Intelligence Piscataway: IEEE, 2019: 1548?1554.
相似文献/References:
[1]向峥嵘,陈庆伟.基于小波和LSSVM的软测量建模方法[J].智能系统学报,2010,5(1):63.
 XIANG Zheng-rong,CHEN Qing-wei.An approach to soft sensor modeling based onwavelets and a least square support vector machine[J].CAAI Transactions on Intelligent Systems,2010,5():63.
[2]钱晓山,阳春华.基于GEP的最小二乘支持向量机模型参数选择[J].智能系统学报,2012,7(3):225.
 QIAN Xiaoshan,YANG Chunhua.A parameter selection method of a least squares support vector machine based on gene expression programming[J].CAAI Transactions on Intelligent Systems,2012,7():225.

备注/Memo

收稿日期:2022-02-27。
基金项目:国家自然科学基金项目(61972181).
作者简介:吴晗,硕士研究生,主要研究方向为人工智能、模式识别;王士同,教授,博士生导师,全国优秀教师、国务院政府特贴获得者、省部级有突出贡献中青年专家,主要研究方向为人工智能与模式识别。主持及参与国家自然科学基金项目6项,获教育部、中船总公司、湖南省等省部级科技进步奖10项。发表学术论文50余篇。
通讯作者:王士同.E-mail:wxwangst@aliyun.com

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com