[1]王巍,杨耀权,王乾铭,等.嵌入视觉关系掩码的多类别金具检测方法[J].智能系统学报,2023,18(3):440-449.[doi:10.11992/tis.202202021]
 WANG Wei,YANG Yaoquan,WANG Qianming,et al.A multi-category fitting detection method with embedded visual relation masks[J].CAAI Transactions on Intelligent Systems,2023,18(3):440-449.[doi:10.11992/tis.202202021]
点击复制

嵌入视觉关系掩码的多类别金具检测方法

参考文献/References:
[1] 王宾, 倪江, 王海港, 等. 输电线路弧光高阻接地故障单端测距分析[J]. 中国电机工程学报, 2017, 37(5): 1333–1341
WANG Bin, NI Jiang, WANG Haigang, et al. Single-end fault location for high impedance arc grounding fault in transmission line[J]. Proceedings of the CSEE, 2017, 37(5): 1333–1341
[2] 刘传洋, 吴一全. 基于深度学习的输电线路视觉检测方法研究进展[J/OL]. 中国电机工程学报, 2022: 1?24. (2022?08?31). https://kns.cnki.net/kcms/detail/11.2107.TM.20220831.1053.002.html.
LIU Chuanyang, WU Yiquan. Research progress of vision detection methods based on deep learning for transmission lines[J/OL]. Proceedings of the CSEE, 2022: 1?24. (2022?08?31).https://kns.cnki.net/kcms/detail/11.2107.TM.20220831.1053.002.html.
[3] 马忠梅, 韩宝卿, 李文娟, 等. 智能识别技术在无人机输电线路巡检中的应用[J]. 集成电路应用, 2022, 39(8): 126–127
MA Zhongmei, HAN Baoqing, LI Wenjuan, et al. Application of intelligent identification in UAV inspection for transmission lines[J]. Application of IC, 2022, 39(8): 126–127
[4] 王杨杨, 曹晖, 莫文昊. 基于深度学习的改进型YOLOv4输电线路鸟巢检测与识别[J]. 智慧电力, 2023, 51(1): 101–107
WANG Yangyang, CAO Hui, MO Wenhao. Bird’s nest detection and identification on improved YOLOv4 transmission line based on deep learning[J]. Smart power, 2023, 51(1): 101–107
[5] 李轶. 基于深度学习的无人机输电线路巡检故障检测研究[J]. 流体测量与控制, 2022, 3(6): 56–58,82
LI Yi. Research on fault detection of UAV transmission line inspection based on deep learning[J]. Fluid measurement & control, 2022, 3(6): 56–58,82
[6] 翟永杰, 杨旭, 赵振兵, 等. 融合共现推理的Faster R-CNN输电线路金具检测[J]. 智能系统学报, 2021, 16(2): 237–246
ZHAI Yongjie, YANG Xu, ZHAO Zhenbing, et al. Integrating co-occurrence reasoning for Faster R-CNN transmission line fitting detection[J]. CAAI transactions on intelligent systems, 2021, 16(2): 237–246
[7] 和敬涵, 罗国敏, 程梦晓, 等. 新一代人工智能在电力系统故障分析及定位中的研究综述[J]. 中国电机工程学报, 2020, 40(17): 5506–5516
HE Jinghan, LUO Guomin, CHENG Mengxiao, et al. A research review on application of artificial intelligence in power system fault analysis and location[J]. Proceedings of the CSEE, 2020, 40(17): 5506–5516
[8] 刘召, 张黎明, 耿美晓, 等. 基于改进的Faster R-CNN高压线缆目标检测方法[J]. 智能系统学报, 2019, 14(4): 627–634
LIU Zhao, ZHANG Liming, GENG Meixiao, et al. Object detection of high-voltage cable based on improved Faster R-CNN[J]. CAAI transactions on intelligent systems, 2019, 14(4): 627–634
[9] 宋万潼, 李冰锋, 费树岷. 基于先验知识的航拍绝缘子检测方法[J]. 计算机工程, 2021, 47(8): 301–307,314
SONG Wantong, LI Bingfeng, FEI Shumin. Prior knowledge-based insulator detection method using aerial images[J]. Computer engineering, 2021, 47(8): 301–307,314
[10] 汤踊, 韩军, 魏文力, 等. 深度学习在输电线路中部件识别与缺陷检测的研究[J]. 电子测量技术, 2018, 41(6): 60–65
TANG Yong, HAN Jun, WEI Wenli, et al. Research on part recognition and defect detection of trainsmission line in deep learning[J]. Electronic measurement technology, 2018, 41(6): 60–65
[11] 高强, 廉启旺. 航拍图像中绝缘子目标检测的研究[J]. 电测与仪表, 2019, 56(5): 119–123
GAO Qiang, LIAN Qiwang. Research on target detection of insulator in aerial image[J]. Electrical measurement & instrumentation, 2019, 56(5): 119–123
[12] 赵振兵, 江爱雪, 戚银城, 等. 嵌入遮挡关系模块的SSD模型的输电线路图像金具检测[J]. 智能系统学报, 2020, 15(4): 656–662
ZHAO Zhenbing, JIANG Aixue, QI Yincheng, et al. Fittings detection in transmission line images with SSD model embedded occlusion relation module[J]. CAAI transactions on intelligent systems, 2020, 15(4): 656–662
[13] 戚银城, 江爱雪, 赵振兵, 等. 基于改进SSD模型的输电线路巡检图像金具检测方法[J]. 电测与仪表, 2019, 56(22): 7–12,43
QI Yincheng, JIANG Aixue, ZHAO Zhenbing, et al. Fittings detection method in patrol images of transmission line based on improved SSD[J]. Electrical measurement & instrumentation, 2019, 56(22): 7–12,43
[14] WAN Neng, TANG Xuming, LIU Siyan, et al. Transmission line image object detection method considering fine-grained contexts[C]//2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference. Chongqing: IEEE, 2020: 499?502.
[15] 赵振兵, 李延旭, 甄珍, 等. 结合KL散度和形状约束的Faster R-CNN典型金具检测方法[J]. 高电压技术, 2020, 46(9): 3018–3026
ZHAO Zhenbing, LI Yanxu, ZHEN Zhen, et al. Typical fittings detection method with faster R-CNN combining KL divergence and shape constraints[J]. High voltage engineering, 2020, 46(9): 3018–3026
[16] JOYCE J M. Kullback-leibler divergence[M]//International encyclopedia of statistical science. Berlin: Springer, 2011: 720?722.
[17] SENHAJI K, RAMCHOUN H, ETTAOUIL M. Training feedforward neural network via multiobjective optimization model using non-smooth L1/2[J]. Neurocomputing, 2020, 410: 1–11.
[18] FAN Qi, ZHOU Wei, TANG Chikeung, et al. Few-shot object detection with attention-RPN and multi-relation detector[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. Seattle: IEEE, 2020: 4013?4022.
[19] 刘兴亚, 周洋. 特高压交流输电线路跳线安装施工技术[J]. 集成电路应用, 2021, 38(12): 94–95
LIU Xingya, ZHOU Yang. Installation and construction technology of jumper for UHV AC transmission line[J]. Application of IC, 2021, 38(12): 94–95
[20] HU Jie, SHEN Li, SUN Gang. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132?7141.
[21] BOTTOU L. Stochastic gradient descent tricks[J]. Neural networks: tricks of the trade (second edition), 2012: 421?436.
[22] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137–1149.
[23] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 936?944.
[24] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[M]//Computer Vision – ECCV 2014. Cham: Springer International Publishing, 2014: 740?755.
[25] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//European Conference on Computer Vision. Cham: Springer, 2016: 21?37.
[26] REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2018?04?08)[2022?02?24]. https://arxiv.org/abs/1804.02767.
相似文献/References:
[1]胡光龙,秦世引.动态成像条件下基于SURF和Mean shift的运动目标高精度检测[J].智能系统学报,2012,7(1):61.
 HU Guanglong,QIN Shiyin.High precision detection of a mobile object under dynamic imaging based on SURF and Mean shift[J].CAAI Transactions on Intelligent Systems,2012,7():61.
[2]韩峥,刘华平,黄文炳,等.基于Kinect的机械臂目标抓取[J].智能系统学报,2013,8(2):149.[doi:10.3969/j.issn.1673-4785.201212038]
 HAN Zheng,LIU Huaping,HUANG Wenbing,et al.Kinect-based object grasping by manipulator[J].CAAI Transactions on Intelligent Systems,2013,8():149.[doi:10.3969/j.issn.1673-4785.201212038]
[3]韩延彬,郭晓鹏,魏延文,等.RGB和HSI颜色空间的一种改进的阴影消除算法[J].智能系统学报,2015,10(5):769.[doi:10.11992/tis.201410010]
 HAN Yanbin,GUO Xiaopeng,WEI Yanwen,et al.An improved shadow removal algorithm based on RGB and HSI color spaces[J].CAAI Transactions on Intelligent Systems,2015,10():769.[doi:10.11992/tis.201410010]
[4]曾宪华,易荣辉,何姗姗.流形排序的交互式图像分割[J].智能系统学报,2016,11(1):117.[doi:10.11992/tis.201505037]
 ZENG Xianhua,YI Ronghui,HE Shanshan.Interactive image segmentation based on manifold ranking[J].CAAI Transactions on Intelligent Systems,2016,11():117.[doi:10.11992/tis.201505037]
[5]岳湘,王洪光,姜勇,等.一种110kV输电线路巡检机器人机构研究[J].智能系统学报,2016,11(2):155.[doi:10.11992/tis.201511032]
 YUE Xiang,WANG Hongguang,JIANG Yong,et al.Design approach for a 110 kV power transmission line inspection robot mechanism[J].CAAI Transactions on Intelligent Systems,2016,11():155.[doi:10.11992/tis.201511032]
[6]宋屹峰,王洪光,康文杰,等.DOI面向断股补修作业任务的电力机器人机构设计[J].智能系统学报,2017,12(2):150.[doi:10.11992/tis.201605004]
 SONG Yifeng,WANG Hongguang,KANG Wenjie,et al.Optimizing electric power robot design for broken-strand repair tasks[J].CAAI Transactions on Intelligent Systems,2017,12():150.[doi:10.11992/tis.201605004]
[7]葛园园,许有疆,赵帅,等.自动驾驶场景下小且密集的交通标志检测[J].智能系统学报,2018,13(3):366.[doi:10.11992/tis.201706040]
 GE Yuanyuan,XU Youjiang,ZHAO Shuai,et al.Detection of small and dense traffic signs in self-driving scenarios[J].CAAI Transactions on Intelligent Systems,2018,13():366.[doi:10.11992/tis.201706040]
[8]莫宏伟,汪海波.基于Faster R-CNN的人体行为检测研究[J].智能系统学报,2018,13(6):967.[doi:10.11992/tis.201801025]
 MO Hongwei,WANG Haibo.Research on human behavior detection based on Faster R-CNN[J].CAAI Transactions on Intelligent Systems,2018,13():967.[doi:10.11992/tis.201801025]
[9]宁欣,李卫军,田伟娟,等.一种自适应模板更新的判别式KCF跟踪方法[J].智能系统学报,2019,14(1):121.[doi:10.11992/tis.201806038]
 NING Xin,LI Weijun,TIAN Weijuan,et al.Adaptive template update of discriminant KCF for visual tracking[J].CAAI Transactions on Intelligent Systems,2019,14():121.[doi:10.11992/tis.201806038]
[10]伍鹏瑛,张建明,彭建,等.多层卷积特征的真实场景下行人检测研究[J].智能系统学报,2019,14(2):306.[doi:10.11992/tis.201710019]
 WU Pengying,ZHANG Jianming,PENG Jian,et al.Research on pedestrian detection based on multi-layer convolution feature in real scene[J].CAAI Transactions on Intelligent Systems,2019,14():306.[doi:10.11992/tis.201710019]
[11]翟永杰,杨旭,赵振兵,等.融合共现推理的Faster R-CNN输电线路金具检测[J].智能系统学报,2021,16(2):237.[doi:10.11992/tis.202012023]
 ZHAI Yongjie,YANG Xu,ZHAO Zhenbing,et al.Integrating co-occurrence reasoning for Faster R-CNN transmission line fitting detection[J].CAAI Transactions on Intelligent Systems,2021,16():237.[doi:10.11992/tis.202012023]
[12]翟永杰,王乾铭,杨旭,等.融合外部知识的输电线路多金具解耦检测方法[J].智能系统学报,2022,17(5):980.[doi:10.11992/tis.202107026]
 ZHAI Yongjie,WANG Qianming,YANG Xu,et al.A multi-fitting decoupling detection method for transmission lines based on external knowledge[J].CAAI Transactions on Intelligent Systems,2022,17():980.[doi:10.11992/tis.202107026]
[13]戚银城,赵席彬,耿劭锋,等.基于遮挡关系推理的输电线路图像金具检测[J].智能系统学报,2022,17(6):1154.[doi:10.11992/tis.202108036]
 QI Yincheng,ZHAO Xibin,GENG Shaofeng,et al.Fittings detection in transmission line images with occlusion relation inference[J].CAAI Transactions on Intelligent Systems,2022,17():1154.[doi:10.11992/tis.202108036]
[14]赵振兵,郭广学,王艺衡,等.融合边缘感知与统计纹理知识的输电线路金具锈蚀检测[J].智能系统学报,2024,19(5):1228.[doi:10.11992/tis.202306009]
 ZHAO Zhenbing,GUO Guangxue,WANG Yiheng,et al.Rust detection in transmission line fittings via fusion of edge perception and statistical texture knowledge[J].CAAI Transactions on Intelligent Systems,2024,19():1228.[doi:10.11992/tis.202306009]

备注/Memo

收稿日期:2022-02-24。
基金项目:国家自然科学基金项目(U21A20486,61871182);河北省自然科学基金项目(F2021502008).
作者简介:王巍,硕士研究生,主要研究方向为图像处理和电力视觉。;杨耀权,教授,博士,主要研究方向为计算机视觉、智能测控技术。主持河北省科技计划项目1项,主持横向科研项目12项。发表学术论文80余篇。;翟永杰,教授,博士,主要研究方向为电力视觉。主持国家自然科学基金面上项目1项、河北省自然科学基金项目1项,主持横向科研项目16项,参与国家重点研发计划项目1项,授权发明专利10项,获山东省科技进步一等奖1项。发表学术论文30余篇,编著1部,参编著作3部,参编教材1部。
通讯作者:翟永杰.E-mail:zhaiyongjie@ncepu.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com