[1]陈鹤,吴庆祥,孙宁,等.面向大尺寸货物运送的吊车控制方法综述[J].智能系统学报,2022,17(4):824-838.[doi:10.11992/tis.202201055]
 CHEN He,WU Qingxiang,SUN Ning,et al.Overview of crane control methods for large-size cargo transportation[J].CAAI Transactions on Intelligent Systems,2022,17(4):824-838.[doi:10.11992/tis.202201055]
点击复制

面向大尺寸货物运送的吊车控制方法综述

参考文献/References:
[1] WU Xianqing, HE Xiongxiong. Partial feedback linearization control for 3-D underactuated overhead crane systems[J]. ISA transactions, 2016, 65: 361–370.
[2] 孙宁, 方勇纯. 一类欠驱动系统的控制方法综述[J]. 智能系统学报, 2011, 6(3): 200?207.
SUN Ning, FANG Yongchun. A review for the control of a class of underactuated systems[J]. CAAI transactions on intelligent systems, 2011, 6(3): 200?207.
[3] SUN Ning, FANG Yongchun, ZHANG Yudong, et al. A novel kinematic coupling-based trajectory planning method for overhead cranes[J]. IEEE/ASME transactions on mechatronics, 2012, 17(1): 166–173.
[4] KIM G H, HONG K S. Adaptive sliding-mode control of an offshore container crane with unknown disturbances[J]. IEEE/ASME transactions on mechatronics, 2019, 24(6): 2850–2861.
[5] CHEN He, SUN Ning. Nonlinear control of underactuated systems subject to both actuated and unactuated state constraints with experimental verification[J]. IEEE transactions on industrial electronics, 2020, 67(9): 7702–7714.
[6] LE Ta, LEE S, MOON S. Partial feedback linearization and sliding mode techniques for 2D crane control[J]. Transactions of the institute of measurement and control, 2013, 36(1): 78–87.
[7] SUN Ning, YANG Tong, CHEN He, et al. Dynamic feedback antiswing control of shipboard cranes without velocity measurement: theory and hardware experiments[J]. IEEE transactions on industrial informatics, 2019, 15(5): 2879–2891.
[8] ZHANG Menghua, ZHANG Yongfeng, OUYANG Huimin, et al. Adaptive integral sliding mode control with payload sway reduction for 4-DOF tower crane systems[J]. Nonlinear dynamics, 2020, 99(4): 2727–2741.
[9] YANG Tong, SUN Ning, CHEN He, et al. Neural network-based adaptive antiswing control of an underactuated ship-mounted crane with roll motions and input dead zones[J]. IEEE transactions on neural networks and learning systems, 2020, 31(3): 901?914.
[10] THO H D, KANESHIGE A, TERASHIMA K. Minimum-time S-curve commands for vibration-free transportation of an overhead crane with actuator limits[J]. Control engineering practice, 2020, 98: 104390.
[11] SMOCZEK J, SZPYTKO J. Particle swarm optimization-based multivariable generalized predictive control for an overhead crane[J]. IEEE/ASME transactions on mechatronics, 2017, 22(1): 258–268.
[12] WANG Zhenyan, CHEN Zhimei, ZHANG Jinggang. On PSO based fuzzy neural network sliding mode control for overhead crane[M]//Advances in Intelligent and Soft Computing. Heidelberg: Springer Berlin Heidelberg, 2011: 563?572.
[13] YANG Tong, SUN Ning, CHEN He, et al. Observer-based nonlinear control for tower cranes suffering from uncertain friction and actuator constraints with experimental verification[J]. IEEE transactions on industrial electronics, 2021, 68(7): 6192–6204.
[14] 赵潇菲, 张井岗. 柔性倒立摆的模糊控制算法[J]. 智能系统学报, 2010, 5(4): 347?352.
ZHAO Xiaofei, ZHANG Jinggang. A fuzzy control method for flexible-joint inverted pendulums[J]. CAAI transactions on intelligent systems, 2010, 5(4): 347?352.
[15] 王晓宇, 闫继宏, 徐莉红. 基于自控测距法的机器人位姿估计[J]. 智能系统学报, 2009, 4(2): 169?174.
WANG Xiaoyu, YAN Jihong, XU Lihong. Improving estimations of a robot’s position and attitude with accelerometer enhanced odometry[J]. CAAI transactions on intelligent systems, 2009, 4(2): 169?174.
[16] ZHANG Menghua, MA Xin, RONG Xuewen, et al. A partially saturated adaptive learning controller for overhead cranes with payload hoisting/lowering and unknown parameters[J]. Nonlinear dynamics, 2017, 89(3): 1779–1791.
[17] CHWA D. Sliding-mode-control-based robust finite-time antisway tracking control of 3-D overhead cranes[J]. IEEE transactions on industrial electronics, 2017, 64(8): 6775–6784.
[18] ZHANG Zhongcai, WU Yuqiang, HUANG Jinming. Differential-flatness-based finite-time anti-swing control of underactuated crane systems[J]. Nonlinear dynamics, 2017, 87(3): 1749–1761.
[19] WU Xianqing, XU Kexin, LEI Meizhen, et al. Disturbance-compensation-based continuous sliding mode control for overhead cranes with disturbances[J]. IEEE transactions on automation science and engineering, 2020, 17(4): 2182–2189.
[20] HE Wei, GE S S. Cooperative control of a nonuniform gantry crane with constrained tension[J]. Automatica, 2016, 66: 146–154.
[21] ZHANG Menghua, JING Xinjian, ZHU Zaixing. Disturbance employment-based sliding mode control for 4-DOF tower crane systems[J]. Mechanical systems and signal processing, 2021, 161: 107946.
[22] YE Jiahui, HUANG Jie. Analytical analysis and oscillation control of payload twisting dynamics in a tower crane carrying a slender payload[J]. Mechanical systems and signal processing, 2021, 158: 107763.
[23] WU T S, KARKOUB M, YU W S, et al. Anti-sway tracking control of tower cranes with delayed uncertainty using a robust adaptive fuzzy control[J]. Fuzzy sets and systems, 2016, 290: 118–137.
[24] TUAN L A, LEE S G. Modeling and advanced sliding mode controls of crawler cranes considering wire rope elasticity and complicated operations[J]. Mechanical systems and signal processing, 2018, 103: 250–263.
[25] RAJA ISMAIL R M T, THAT N D, HA Q P. Modelling and robust trajectory following for offshore container crane systems[J]. Automation in construction, 2015, 59: 179–187.
[26] NGO Q H, HONG K S. Sliding-mode antisway control of an offshore container crane[J]. IEEE/ASME transactions on mechatronics, 2012, 17(2): 201–209.
[27] UCHIYAMA N. Robust control of rotary crane by partial-state feedback with integrator[J]. Mechatronics, 2009, 19(8): 1294–1302.
[28] SUN Ning, YANG Tong, CHEN He, et al. Adaptive anti-swing and positioning control for 4-DOF rotary cranes subject to uncertain/unknown parameters with hardware experiments[J]. IEEE transactions on systems, man, and cybernetics:systems, 2019, 49(7): 1309–1321.
[29] WU Yiming, SUN Ning, CHEN He, et al. Adaptive output feedback control for 5-DOF varying-cable-length tower cranes with cargo mass estimation[J]. IEEE transactions on industrial informatics, 2021, 17(4): 2453–2464.
[30] TERASHIMA K, SHEN Y, YANO K. Modeling and optimal control of a rotary crane using the straight transfer transformation method[J]. Control engineering practice, 2007, 15(9): 1179–1192.
[31] SUN Ning, FANG Yongchun, CHEN He, et al. Slew/translation positioning and swing suppression for 4-DOF tower cranes with parametric uncertainties: design and hardware experimentation[J]. IEEE transactions on industrial electronics, 2016, 63(10): 6407–6418.
[32] LEE H H, LIANG Y. A robust anti-swing trajectory control of overhead cranes with high-speed load hoisting: experimental study[C]//Proceedings of ASME 2010 International Mechanical Engineering Congress and Exposition. Vancouver: ASME, 2012: 711?716.
[33] CHEN He, FANG Yongchun, SUN Ning. A swing constraint guaranteed MPC algorithm for underactuated overhead cranes[J]. IEEE/ASME transactions on mechatronics, 2016, 21(5): 2543–2555.
[34] HONG K S, NGO Q H. Dynamics of the container crane on a mobile harbor[J]. Ocean engineering, 2012, 53: 16–24.
[35] SUN Ning, YANG Tong, FANG Yongchun, et al. Transportation control of double-pendulum cranes with a nonlinear quasi-PID scheme: design and experiments[J]. IEEE transactions on systems, man, and cybernetics:systems, 2019, 49(7): 1408–1418.
[36] GAIDAI O, YURCHENKO D, YE Renchuan, et al. Offshore crane non-linear stochastic response: novel design and extreme response by a path integration[J]. Ships and offshore structures, 2022, 17(6): 1294–1300.
[37] JAAFAR H I, MOHAMED Z, AHMAD M A, et al. Control of an underactuated double-pendulum overhead crane using improved model reference command shaping: design, simulation and experiment[J]. Mechanical systems and signal processing, 2021, 151: 107358.
[38] Yang Tong, Sun Ning, Fang Yongchun. Adaptive fuzzy control for a class of MIMO underactuated systems with plant uncertainties and actuator deadzones: design and experiments[J]. IEEE transactions on cybernetics, 2021: 1?14.
[39] MASOUD Z, ALHAZZA K, ABU-NADA E, et al. A hybrid command-shaper for double-pendulum overhead cranes[J]. Journal of vibration and control, 2014, 20(1): 24–37.
[40] WU Qingxiang, WANG Xiaokai, HUA Lin, et al. Dynamic analysis and time optimal anti-swing control of double pendulum bridge crane with distributed mass beams[J]. Mechanical systems and signal processing, 2020, 144: 106968.
[41] SUN Ning, FU Yu, YANG Tong, et al. Nonlinear motion control of complicated dual rotary crane systems without velocity feedback: design, analysis, and hardware experiments[J]. IEEE transactions on automation science and engineering, 2020, 17(2): 1017–1029.
[42] ZHOU Bin, ZI Bin, LI Yuan, et al. Hybrid compound function/subinterval perturbation method for kinematic analysis of a dual-crane system with large bounded uncertainty[J]. Journal of computational and nonlinear dynamics, 2020, 16(1): (014501)1–10.
[43] RAMLI L, MOHAMED Z, ABDULLAHI A M, et al. Control strategies for crane systems: a comprehensive review[J]. Mechanical systems and signal processing, 2017, 95: 1–23.
[44] SHI Huaitao, LI Gang, MA Xin, et al. Research on nonlinear coupling anti-swing control method of double pendulum gantry crane based on improved energy[J]. Symmetry, 2019, 11(12): 1511.
[45] MALEKI E, SINGHOSE W. Swing dynamics and input-shaping control of human-operated double-pendulum boom cranes[J]. Journal of computational and nonlinear dynamics, 2012, 7(3): (31006) 1?10.
[46] CHAI Lin, GUO Qihang, LIU Huikang, et al. Linear active disturbance rejection control for double-pendulum overhead cranes[J]. IEEE access, 2021, 9: 52225–52237.
[47] TAN H, NURAHMI L, PRAMUJATI B, et al. On the reconfiguration of cable-driven parallel robots with multiple mobile cranes[C]//2020 5th International Conference on Robotics and Automation Engineering. Singapore: IEEE, 2020: 126?130.
[48] ZI Bin, QIAN Sen, DING Huafeng, et al. Design and analysis of cooperative cable parallel manipulators for multiple mobile cranes[J]. International journal of advanced robotic systems, 2017, 9(5): 207–216.
[49] QIAN Sen, ZI Bin, ZHANG Dan, et al. Kinematics and error analysis of cooperative cable parallel manipulators for multiple mobile cranes[J]. International journal of mechanics and materials in design, 2014, 10(4): 395–409.
[50] CHEN He, FANG Yongchun, SUN Ning. A swing constrained time-optimal trajectory planning strategy for double pendulum crane systems[J]. Nonlinear dynamics, 2017, 89(2): 1513–1524.
[51] SINGHOSE W, KIM D, KENISON M. Input shaping control of double-pendulum bridge crane oscillations[J]. Journal of dynamic systems, measurement, and control, 2008, 130(3): (034504) 1?7.
[52] MAR R, GOYAL A, NGUYEN V, et al. Combined input shaping and feedback control for double-pendulum systems[J]. Mechanical systems and signal processing, 2017, 85: 267–277.
[53] ZHANG Menghua, MA Xin, CHAI Hui, et al. A novel online motion planning method for double-pendulum overhead cranes[J]. Nonlinear dynamics, 2016, 85(2): 1079–1090.
[54] LIU Cangcang, SUN Bo, LI Fan. Acceleration planning based anti-swing and position control for double-pendulum cranes[C]//2017 29th Chinese Control and Decision Conference. Chongqing: IEEE, 2017: 5671?5675.
[55] SUN Ning, FANG Yongchun, CHEN He, et al. Amplitude-saturated nonlinear output feedback antiswing control for underactuated cranes with double-pendulum cargo dynamics[J]. IEEE transactions on industrial electronics, 2017, 64(3): 2135–2146.
[56] ZHANG Menghua, ZHANG Yongfeng, JI Bing, et al. Modeling and energy-based sway reduction control for tower crane systems with double-pendulum and spherical-pendulum effects[J]. Measurement and control-london- institute of measurement and control, 2019, 53(1-2): 141–150.
[57] SUN Ning, WU Yiming, LIANG Xiao, et al. Nonlinear stable transportation control for double-pendulum shipboard cranes with ship-motion-induced disturbances[J]. IEEE transactions on industrial electronics, 2019, 66(12): 9467–9479.
[58] SUN Ning, WU Yiming, FANG Yongchun, et al. Nonlinear antiswing control for crane systems with double-pendulum swing effects and uncertain parameters: design and experiments[J]. IEEE transactions on automation science and engineering, 2018, 15(3): 1413–1422.
[59] OUYANG Huimin, XU Xiang, GANBAT T, et al. Nonlinear-adaptive-based swing reduction control for rotary cranes with double-pendulum effect considering uncertain parameters and external disturbances[J]. Automation in construction, 2021, 126: 103668.
[60] ZHANG Menghua, MA Xin, RONG Xuewen, et al. Adaptive tracking control for double-pendulum overhead cranes subject to tracking error limitation, parametric uncertainties and external disturbances[J]. Mechanical systems and signal processing, 2016, 76/77: 15–32.
[61] ZHANG Menghua, JING Xingjian. Adaptive neural network tracking control for double-pendulum tower crane systems with nonideal inputs[J]. IEEE transactions on systems, man, and cybernetics:systems, 2022, 52(4): 2514–2530.
[62] TUAN L A, LEE S G. Sliding mode controls of double-pendulum crane systems[J]. Journal of mechanical science and technology, 2013, 27(6): 1863–1873.
[63] 董云云, 王中华, 冯志全, 等. 吊车-双摆系统的增量式滑模控制[C]//第二十七届中国控制会议论文集. 昆明:[出版者不详], 2008: 368?371
DONG Yunyun, WANG Zhonghua, FENG Zhiquan, et al. Incremental sliding mode control for double-pendulum-type overhead crane system[C]//2008 27th Chinese Control Conference, Kunming:[s, n.], 2008: 368?371.
[64] ZHANG Menghua, ZHANG Yongfeng, CHENG Xingong. An enhanced coupling PD with sliding mode control method for underactuated double-pendulum overhead crane systems[J]. International journal of control, automation and systems, 2019, 17(6): 1579–1588.
[65] OUYANG Huimin, HU Jinxin, ZHANG Guangming, et al. Sliding-mode-based trajectory tracking and load sway suppression control for double-pendulum overhead cranes[J]. IEEE access, 2019, 7: 4371–4379.
[66] QIAN Dianwei, TONG Shiwen, LEE S. Fuzzy-Logic-based control of payloads subjected to double-pendulum motion in overhead cranes[J]. Automation in construction, 2016, 65: 133–143.
[67] CHEN Qingrong, CHENG Wenming, GAO Lingchong, et al. A pure neural network controller for double-pendulum crane anti-sway control: based on Lyapunov stability theory[J]. Asian journal of control, 2021, 23(1): 387–398.
[68] QIANG Haiyan, SUN Yougang, LYU Jinchao, et al. Anti-sway and positioning adaptive control of a double-pendulum effect crane system with neural network compensation[J]. Frontiers in robotics and AI, 2021, 8: 639734.
[69] ABDEL-RAZAK M H, ATA A A, MOHAMED K T, et al. Proportional-integral-derivative controller with inlet derivative filter fine-tuning of a double-pendulum gantry crane system by a multi-objective genetic algorithm[J]. Engineering optimization, 2020, 52(3): 527–548.
[70] JAAFAR H I, MOHAMED Z, MOHD SUBHA N A, et al. Efficient control of a nonlinear double-pendulum overhead crane with sensorless payload motion using an improved PSO-tuned PID controller[J]. Journal of vibration and control, 2019, 25(4): 907–921.
[71] MASOUD Z N, ALHAZZA K A, MAJEED M A, et al. A hybrid command-shaping control system for highly accelerated double-pendulum gantry cranes[C]//Proceedings of ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. San Diego: ASME, 2010: 1809?1817.
[72] SINGHOSE W E, TOWELL S T. Double-pendulum gantry crane dynamics and control[C]//Proceedings of the 1998 IEEE International Conference on Control Applications. Trieste: IEEE, 1998: 1205-1209.
[73] MAGHSOUDI M J, RAMLI L, SUDIN S, et al. Improved unity magnitude input shaping scheme for sway control of an underactuated 3D overhead crane with hoisting[J]. Mechanical systems and signal processing, 2019, 123: 466–482.
[74] VAUGHAN J, MALEKI E, SINGHOSE W. Advantages of using command shaping over feedback for crane control[C]//Proceedings of the 2010 American Control Conference. Baltimore: IEEE, 2010: 2308?2313.
[75] MASOUD Z N, ALHAZZA K A. Frequency-modulation input shaping control of double-pendulum overhead cranes[J]. Journal of dynamic systems, measurement, and control, 2014, 136(2): (021005)1–11.
[76] OUYANG Huimin, ZHANG Guangming, MEI Lei, et al. Residual load sway reduction for double-pendulum overhead cranes using simple motion trajectory[C]//2017 IEEE International Conference on Real-time Computing and Robotics. Okinawa: IEEE, 2017: 327?332.
[77] OUYANG Huimin, ZHANG Guangming, MEI Lei, et al. Simple robust control for double-pendulum overhead cranes[C]//2018 IEEE International Conference on Real-time Computing and Robotics. Kandima: IEEE, 2018: 190?195.
[78] ABDEL-RAHMAN E M, NAYFEH A H, MASOUD Z N. Dynamics and control of cranes: a review[J]. Journal of vibration and control, 2003, 9(7): 863–908.
[79] WU Qingxiang, WANG Xiaokai, HUA Lin, et al. Improved time optimal anti-swing control system based on low-pass filter for double pendulum crane system with distributed mass beam[J]. Mechanical systems and signal processing, 2021, 151: 107444.
[80] HUANG Jie, LIANG Zan, ZANG Qiang. Dynamics and swing control of double-pendulum bridge cranes with distributed-mass beams[J]. Mechanical systems and signal processing, 2015, 54/55: 357–366.
[81] TANG Rui, HUANG Jie. Control of bridge cranes with distributed-mass payloads under windy conditions[J]. Mechanical systems and signal processing, 2016, 72/73: 409–419.
[82] HUANG Jie, XIE Xumiao, LIANG Zan. Control of bridge cranes with distributed-mass payload dynamics[J]. IEEE/ASME transactions on mechatronics, 2015, 20(1): 481–486.
[83] PENG Jiaohui, HUANG Jie, SINGHOSE W. Payload twisting dynamics and oscillation suppression of tower cranes during slewing motions[J]. Nonlinear dynamics, 2019, 98(2): 1041–1048.
[84] WU Qingxiang, WANG Xiaokai, HUA Lin, et al. Modeling and nonlinear sliding mode controls of double pendulum cranes considering distributed mass beams, varying roped length and external disturbances[J]. Mechanical systems and signal processing, 2021, 158: 107756.
[85] ZHAO Xinsheng, HUANG Jie. Distributed-mass payload dynamics and control of dual cranes undergoing planar motions[J]. Mechanical systems and signal processing, 2019, 126: 636–648.
[86] VAUGHAN J, YOO J, SINGHOSE W. Using approximate multi-crane frequencies for input shaper design[C]//2012 12th International Conference on Control, Automation and Systems. Jeju: IEEE, 2012: 639?644.
[87] MALEKI E, SINGHOSE W, HAWKE J, et al. Dynamic response of a dual-hoist bridge crane[C]//Proceedings of ASME 2013 dynamic systems and control conference. Palo Alto: ASME. 2014.
[88] HUANG Jie, ZHU Kuo. Dynamics and control of three-dimensional dual cranes transporting a bulky payload[J]. Proceedings of the institution of mechanical engineers, part C:journal of mechanical engineering science, 2021, 235(11): 1956–1965.
[89] LIU Zhuoqing, FU Yu, SUN Ning, et al. Collaborative antiswing hoisting control for dual rotary cranes with motion constraints[J]. IEEE transactions on industrial informatics, 2022, 18(9): 6120–6130.
[90] AN Jianqi, YU Yan, CAO Weihua, et al. Load distribution and optimization method for cooperative lifting of double cranes considering the minimal lifting consumption[C]//Proceedings of the 33rd Chinese Control Conference. Nanjing: IEEE, 2014: 2969?2974.
[91] AN Jianqi, ZHU Lusha, XIONG Yonghua, et al. Path planning method for dual cranes considering the changes of load ratio[C]//2015 34th Chinese Control Conference. Hangzhou: IEEE, 2015: 2774?2779.
[92] SIVAKUMAR P, VARGHESE K, BABU N R. Automated path planning of cooperative crane lifts using heuristic search[J]. Journal of computing in civil engineering, 2003, 17(3): 197–207.
[93] ALI M S A D, BABU N R, VARGHESE K. Collision free path planning of cooperative crane manipulators using genetic algorithm[J]. Journal of computing in civil engineering, 2005, 19(2): 182–193.
[94] FU Yu, YANG Tong, SUN Ning, et al. Dynamics modeling and analysis for cooperative dual rotary crane systems[C]//2018 37th Chinese Control Conference. Wuhan: IEEE, 2018: 5492?5497.
[95] FU Yu, SUN Ning, YANG Tong, et al. Adaptive coupling anti-swing tracking control of underactuated dual boom crane systems[J]. IEEE transactions on systems, man, and cybernetics:systems, 2022, 52(7): 4697–4709.
[96] LEBAN F A, DíAZ-GONZALEZ J, PARKER G G, et al. Inverse kinematic control of a dual crane system experiencing base motion[J]. IEEE transactions on control systems technology, 2015, 23(1): 331–339.
[97] QIAN Sen, ZI Bin, DING Huafeng. Dynamics and trajectory tracking control of cooperative multiple mobile cranes[J]. Nonlinear dynamics, 2016, 83(1/2): 89–108.
[98] ZI Bin, LIN Jun, QIAN Sen. Localization, obstacle avoidance planning and control of a cooperative cable parallel robot for multiple mobile cranes[J]. Robotics and computer-integrated manufacturing, 2015, 34: 105–123.

备注/Memo

收稿日期:2022-01-30。
基金项目:国家自然科学基金项目(U20A20198,61873134,61903120);天津市自然科学基金项目(20JCYBJC01360);河北省自然科学基金项目(F2020202006);中国博士后科学基金项目(2021M701779).
作者简介:陈鹤,副教授,博士生导师,主要研究方向为欠驱动系统、智能机器人;吴庆祥,助理研究员,博士,主要研究方向为欠驱动系统智能控制与工业应用;孙宁,教授,博士生导师,主要研究方向为驱动机器人(包括吊车/起重机)、气动人工肌肉机器人、特种工业机器人等系统的智能控制与应用等。曾获吴文俊人工智能自然科学一等奖、吴文俊人工智能优秀青年奖、天津市自然科学一等奖、2019中国智能制造十大科技进展、多个期刊/会议杰出/最佳论文奖等
通讯作者:孙宁. E-mail: sunn@nankai.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com