[1]沈鑫,魏利胜.基于注意力残差U-Net的皮肤镜图像分割方法[J].智能系统学报,2023,18(4):699-707.[doi:10.11992/tis.202201030]
SHEN Xin,WEI Lisheng.Dermoscope image segmentation method based on ARB-UNet[J].CAAI Transactions on Intelligent Systems,2023,18(4):699-707.[doi:10.11992/tis.202201030]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
18
期数:
2023年第4期
页码:
699-707
栏目:
学术论文—机器学习
出版日期:
2023-07-15
- Title:
-
Dermoscope image segmentation method based on ARB-UNet
- 作者:
-
沈鑫1, 魏利胜2
-
1. 安徽工程大学 电气工程学院, 安徽 芜湖 241000;
2. 安徽工程大学 安徽省电气传动与控制重点实验室, 安徽 芜湖 241000
- Author(s):
-
SHEN Xin1, WEI Lisheng2
-
1. School of Electrical Engineering, Anhui Polytechnic University, Wuhu 241000, China;
2. Anhui Key Laboratory of Electric Drive and Control, Anhui Polytechnic University, Wuhu 241000, China
-
- 关键词:
-
图像分割; 皮肤镜; 卷积神经网络; 注意力残差 U-Net; 注意力机制; 卷积块注意力机制模块; 深度学习; 残差网络
- Keywords:
-
image segmentation; dermoscopic; convolutional neural network; attention residual block-UNet(ARB-UNet); attention mechanism; convolutional block attention module(CBAM); deep learning; residual network
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.202201030
- 摘要:
-
针对皮肤镜图像类内差异性、类间相似性、数据集不平衡等问题,本文提出了一种基于注意力残差U-Net(attention residual block-UNet,ARB-UNet)的皮肤镜图像分割方法。将卷积块注意力机制模块(convolutional block attention module,CBAM)引入到U-Net模型的“跳过连接”中;同时将CBAM模块集成到残差模块DRB(dilated residual networks)中得到注意力残差结构(attention residual block, ARB);且选取Focal Tversky Loss作为该模型的损失函数;在ISIC2016数据集上对所提ARB-UNet模型进行训练和测试,并与传统方法和U-Net等经典方法进行了对比实验,实验结果中灵敏度(sensitivity,SE)达到了92.9%,特异性(specificity,SP)达到了94.1%,Dice相似指数(dice similarity cofficient,DSC)达到了92.1%,整体上均优于其他对比方法,从而验证了本文方法是有效的和可行的。
- Abstract:
-
Aiming at the problems of intra-class difference, inter-class similarity, and dataset imbalance in dermoscopic images, a dermoscopic image segmentation method based on attention residual block-UNet (ARB-UNet) is proposed. Firstly, the convolutional block attention module (CBAM) is introduced into the “skip connection” of U-Net model; at the same time, the CBAM module is integrated into the residual module DRB (dilated residual networks) to obtain the attention residual block(ARB); Focal Tversky loss is selected as the loss function of the model; Finally, the proposed ARB-UNet model is trained and tested on ISIC2016 data set, and compared with traditional methods and classical methods such as U-Net. The experimental results show that the sensitivity (SE), specificity (SP), and dice similarity index (DSC) have reached 92.9%, 94.1%, and 92.1%, respectively, which are all better than other comparative methods in overall. Thus, the feasibility and effectiveness of the method in this paper are verified
更新日期/Last Update:
1900-01-01