[1]冯晗,姜勇.使用改进Yolov5的变电站绝缘子串检测方法[J].智能系统学报,2023,18(2):325-332.[doi:10.11992/tis.202201027]
 FENG Han,JIANG Yong.A substation insulator string detection method based on an improved Yolov5[J].CAAI Transactions on Intelligent Systems,2023,18(2):325-332.[doi:10.11992/tis.202201027]
点击复制

使用改进Yolov5的变电站绝缘子串检测方法

参考文献/References:
[1] 李静, 许鹏娟, 刘树鑫, 等. 复合绝缘子污闪动态发展过程与影响因素[J]. 沈阳工业大学学报, 2019, 41(5): 481–488
LI Jing, XU Pengjuan, LIU Shuxin, et al. Dynamic development process and influencing factors of pollution flashover for composite insulators[J]. Journal of Shenyang University of Technology, 2019, 41(5): 481–488
[2] 郑伟, 郑新才, 黄梅, 等. 输变电设备防污闪措施比较和分析[J]. 电气应用, 2010, 29(5): 68–70
ZHENG Wei, ZHENG Xincai, HUANG Mei, et al. Comparison and analysis of anti-flash measures for transmission and substation equipment[J]. Electrical applications, 2010, 29(5): 68–70
[3] 白雪莲, 杨玲. 浅谈输变电设备的防污闪措施[J]. 中国电子商务, 2010(4): 167–167
BAI Xuelian, YANG Ling. Introduction to anti-fouling flash measures for transmission and substation equipment[J]. China electronic commerce, 2010(4): 167–167
[4] 翟永杰, 王迪, 张木柳. 基于聚类分析和Adaboost算法的绝缘子串识别[J]. 传感器世界, 2016, 22(9): 7–11
ZHAI Yongjie, WANG Di, ZHANG Muliu. Insulator recognition based on clustering analysis and Adaboost algorithm[J]. Sensor world, 2016, 22(9): 7–11
[5] 陈文浩, 姚利娜, 李丰哲. 无人机电网巡检中的绝缘子缺陷检测与定位[J]. 计算机应用, 2019, 39(S1): 210–214
CHEN Wenhao, YAO Lina, LI Fengzhe. Insulator defect detection and location in UAV grid inspection[J]. Journal of computer applications, 2019, 39(S1): 210–214
[6] 方挺, 董冲, 胡兴柳, 等. 航拍图像中绝缘子串的轮廓提取和故障检测[J]. 上海交通大学学报, 2013, 47(12): 1818–1822
FANG Ting, DONG Chong, HU Xingliu, et al. Contour extraction and fault detection of insulator strings in aerial images[J]. Journal of Shanghai Jiao Tong University, 2013, 47(12): 1818–1822
[7] 胡淋波, 姚建刚, 孔维辉, 等. 基于红外图像的高压绝缘子串自动定位方法[J]. 红外技术, 2015, 37(12): 1047–1051
HU Linbo, YAO Jiangang, KONG Weihui, et al. High voltage insulator string automatic location method based on infrared image[J]. Infrared technology, 2015, 37(12): 1047–1051
[8] 姚建刚, 付鹏, 李唐兵, 等. 基于红外图像的绝缘子串自动提取和状态识别[J]. 湖南大学学报(自然科学版), 2015, 42(2): 74–80
YAO Jiangang, FU Peng, LI Tangbing, et al. Algorithm research of automatically extracting the area of insulator from infrared image and state identification[J]. Journal of Hunan university (natural sciences edition), 2015, 42(2): 74–80
[9] 潘翀, 沈鹏飞, 张忠, 等. 基于无人机巡检图像的绝缘子串实时定位研究[J]. 电瓷避雷器, 2020(1): 234–240
PAN Chong, SHEN Pengfei, ZHANG Zhong, et al. Research on real-time positioning of insulator strings based on UAV inspection images[J]. Insulators and surge arresters, 2020(1): 234–240
[10] 刘澈, 姜勇, 姚森敬, 等. 基于多传感器信息融合的绝缘子串自动识别方法[J]. 机械设计与制造, 2019(4): 220–224
LIU Che, JIANG Yong, YAO Senjing, et al. The method to automatic recognition of insulator based on multi-sensor information fusion[J]. Machinery design & manufacture, 2019(4): 220–224
[11] 翟永杰, 王迪, 赵振兵, 等. 基于空域形态一致性特征的绝缘子串定位方法[J]. 中国电机工程学报, 2017, 37(5): 1568–1578
ZHAI Yongjie, WANG Di, ZHAO Zhenbing, et al. Insulator string location method based on spatial configuration consistency feature[J]. Proceedings of the csee, 2017, 37(5): 1568–1578
[12] 沈新平, 彭刚, 袁志强. 基于霍夫变换和RANSAC算法的绝缘子定位方法[J]. 电子测量技术, 2017, 40(6): 132–137
SHEN Xinping, PENG Gang, YUAN Zhiqiang. Insulator location method based on Hough transformation and RANSAC algorithm[J]. Electronic measurement technology, 2017, 40(6): 132–137
[13] 颜宏文, 陈金鑫. 基于改进YOLOv3的绝缘子串定位与状态识别方法[J]. 高电压技术, 2020, 46(2): 423–432
YAN Hongwen, CHEN Jinxin. Insulator string positioning and state recognition method based on improved YOLOv3 algorithm[J]. High voltage engineering, 2020, 46(2): 423–432
[14] HUANG X, SHANG E, XUE J, et al. A Multi-feature fusion-based deep learning for insulator image identification and fault detection[C]//2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference. Chongqing: IEEE, 2020: 1957-1960.
[15] GAO Feng, WANG Jiao, KONG Zhizhan, et al. Recognition of insulator explosion based on deep learning[C]//2017 14th International Computer Conference on Wavelet Active Media Technology and Information Processing. Chengdu: VESTC Press, 2017 : 79?82.
[16] TAO Xian, ZHANG Dapeng, WANG Zihao, et al. Detection of power line insulator defects using aerial images analyzed with convolutional neural networks[J]. IEEE transactions on systems, man, and cybernetics:systems, 2020, 50(4): 1486–1498.
[17] WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle: IEEE, 2020 : 1571?1580.
[18] HU Jie, SHEN Li, SUN Gang. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132?7141.
[19] WANG Qilong, WU Banggu, ZHU Pengfei, et al. ECA-net: efficient channel attention for deep convolutional neural networks[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11531?11539.
[20] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 936?944.
[21] LI Hanhao, XIONG Pengfei, WANG Lingxue. Pyramid Attention Network for Semantic Segmentation[C]// Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 1805?1818.
[22] ZHU Linlin, GENG Xun, LI Zheng, et al. Improving YOLOv5 with attention mechanism for detecting boulders from planetary images[J]. Remote sensing, 2021, 13(18): 3776.
[23] 徐诚极, 王晓峰, 杨亚东. Attention-YOLO: 引入注意力机制的YOLO检测算法[J]. 计算机工程与应用, 2019, 55(6): 13–23,125
XU Chengji, WANG Xiaofeng, YANG Yadong. Attention-YOLO: YOLO detection algorithm that introduces attention mechanism[J]. Computer engineering and applications, 2019, 55(6): 13–23,125
[24] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single Shot MultiBox Detector[C]//European Conference on Computer Vision. Cham: Springer, 2016: 21?37.
[25] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. Yolov4: optimal speed and accuracy of object detection[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 3370?3387.
相似文献/References:
[1]赵文清,程幸福,赵振兵,等.注意力机制和Faster RCNN相结合的绝缘子识别[J].智能系统学报,2020,15(1):92.[doi:10.11992/tis.201907023]
 ZHAO Wenqing,CHENG Xingfu,ZHAO Zhenbing,et al.Insulator recognition based on attention mechanism and Faster RCNN[J].CAAI Transactions on Intelligent Systems,2020,15():92.[doi:10.11992/tis.201907023]
[2]白健鹏,王巍,陈雨溪,等.基于轻量型YOLOv5的风机桨叶检测与空间定位[J].智能系统学报,2022,17(6):1173.[doi:10.11992/tis.202204016]
 BAI Jianpeng,WANG Wei,CHEN Yuxi,et al.Detection and spatial location of wind turbine blades based on lightweight YOLOv5[J].CAAI Transactions on Intelligent Systems,2022,17():1173.[doi:10.11992/tis.202204016]

备注/Memo

收稿日期:2022-01-17。
基金项目:国家自然科学基金项目(52075531)
作者简介:冯晗,硕士研究生,主要研究方向为目标检测;姜勇,研究员,博士,主要研究方向为机器人智能控制、多传感器融合、特种机器人控制系统设计与集成。负责及参加完成了国家高技术研究发展计划重点项目、国家自然科学基金青年及面上项目、中科院知识创新工程重大项目、辽宁省自然科学基金项目、机器人学重点实验室项目、国网及南网重点项目等20余项。获国家发明专利授权3项、实用新型专利4项。登记软件著作权2项,参编专著2部,发表学术论文20余篇
通讯作者:姜勇. E-mail:jiangyong@sia.com

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com