[1]赵靖文,李煊鹏,张为公.车辆多目标交互行为建模的轨迹预测方法[J].智能系统学报,2023,18(3):480-488.[doi:10.11992/tis.202201022]
 ZHAO Jingwen,LI Xuanpeng,ZHANG Weigong.Vehicle trajectory prediction method based on modeling of multi-agent interaction behavior[J].CAAI Transactions on Intelligent Systems,2023,18(3):480-488.[doi:10.11992/tis.202201022]
点击复制

车辆多目标交互行为建模的轨迹预测方法

参考文献/References:
[1] SIVARAMAN S, TRIVEDI M M. Dynamic probabilistic drivability maps for lane change and merge driver assistance[J]. IEEE transactions on intelligent transportation systems, 2014, 15(5): 2063–2073.
[2] HELBING D, MOLNáR P. Social force model for pedestrian dynamics[J]. Physical review E, statistical physics, plasmas, fluids, and related interdisciplinary topics, 1995, 51(5): 4282–4286.
[3] 乔少杰, 金琨, 韩楠, 等. 一种基于高斯混合模型的轨迹预测算法[J]. 软件学报, 2015, 26(5): 1048–1063
QIAO Shaojie, JIN Kun, HAN Nan, et al. Trajectory prediction algorithm based on Gaussian mixture model[J]. Journal of software, 2015, 26(5): 1048–1063
[4] 高建, 毛莺池, 李志涛. 基于高斯混合-时间序列模型的轨迹预测[J]. 计算机应用, 2019, 39(8): 2261–2270
GAO Jian, MAO Yingchi, LI Zhitao. Trajectory prediction based on Gauss mixture time series model[J]. Journal of computer applications, 2019, 39(8): 2261–2270
[5] 乔少杰, 韩楠, 朱新文, 等. 基于卡尔曼滤波的动态轨迹预测算法[J]. 电子学报, 2018, 46(2): 418–423
QIAO Shaojie, HAN Nan, ZHU Xinwen, et al. A dynamic trajectory prediction algorithm based on Kalman filter[J]. Acta electronica sinica, 2018, 46(2): 418–423
[6] SCHULZ J, HUBMANN C, L?CHNER J, et al. Multiple model unscented Kalman filtering in dynamic Bayesian networks for intention estimation and trajectory prediction[C]//2018 21st International Conference on Intelligent Transportation Systems. Maui: IEEE, 2018: 1467?1474.
[7] SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequence learning with neural networks[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2. Montreal: ACM, 2014: 3104–3112.
[8] 孔玮, 刘云, 李辉, 等. 基于深度学习的行人轨迹预测方法综述[J]. 控制与决策, 2021, 36(12): 2841–2850
KONG Wei, LIU Yun, LI Hui, et al. Survey of pedestrian trajectory prediction methods based on deep learning[J]. Control and decision, 2021, 36(12): 2841–2850
[9] JEONG Y, KIM S, YI K. Surround vehicle motion prediction using LSTM-RNN for motion planning of autonomous vehicles at multi-lane turn intersections[J]. IEEE open journal of intelligent transportation systems, 2020, 1: 2–14.
[10] ZHANG Pu, XUE Jianru, ZHANG Pengfei, et al. Social-aware pedestrian trajectory prediction via states refinement LSTM[J]. IEEE transactions on pattern analysis and machine intelligence, 2022, 44(5): 2742–2759.
[11] PSALTA A, TSIRONIS V, KARANTZALOS K, et al. Social pooling with edge convolutions on local connectivity graphs for human trajectory prediction in crowded scenes[C]//2020 IEEE 23rd International Conference on Intelligent Transportation Systems. Rhodes: IEEE, 2020: 1?6.
[12] ALAHI A, GOEL K, RAMANATHAN V, et al. Social LSTM: human trajectory prediction in crowded spaces[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 961?971.
[13] DEO N, TRIVEDI M M. Convolutional social pooling for vehicle trajectory prediction[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Salt Lake City: IEEE, 2018: 1549?15498.
[14] MESSAOUD K, YAHIAOUI I, VERROUST-BLONDET A, et al. Non-local social pooling for vehicle trajectory prediction[C]//2019 IEEE Intelligent Vehicles Symposium (IV). Paris: IEEE, 2019: 975?980.
[15] VEMULA A, MUELLING K, OH J. Social attention: modeling attention in human crowds[C]//2018 IEEE International Conference on Robotics and Automation. New York: ACM, 2018: 1–7.
[16] MESSAOUD K, YAHIAOUI I, VERROUST-BLONDET A, et al. Attention based vehicle trajectory prediction[J]. IEEE transactions on intelligent vehicles, 2021, 6(1): 175–185.
[17] LIN Lei, LI Weizi, BI Huikun, et al. Vehicle trajectory prediction using LSTMs with spatial-temporal attention mechanisms[J]. IEEE intelligent transportation systems magazine, 2022, 14(2): 197–208.
[18] 孙亚圣, 姜奇, 胡洁, 等. 基于注意力机制的行人轨迹预测生成模型[J]. 计算机应用, 2019, 39(3): 668–674
SUN Yasheng, JIANG Qi, HU Jie, et al. Attention mechanism based pedestrian trajectory prediction generation model[J]. Journal of computer applications, 2019, 39(3): 668–674
[19] 李琳辉, 周彬, 连静, 等. 基于社会注意力机制的行人轨迹预测方法研究[J]. 通信学报, 2020, 41(6): 175–183
LI Linhui, ZHOU Bin, LIAN Jing, et al. Research on pedestrian trajectory prediction method based on social attention mechanism[J]. Journal on communications, 2020, 41(6): 175–183
[20] HUANG Yingfan, BI Huikun, LI Zhaoxin, et al. STGAT: modeling spatial-temporal interactions for human trajectory prediction[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2020: 6271?6280.
[21] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all You need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: ACM, 2017: 6000–6010.
[22] MERCAT J, GILLES T, EL ZOGHBY N, et al. Multi-head attention for multi-modal joint vehicle motion forecasting[C]//2020 IEEE International Conference on Robotics and Automation. Paris: IEEE, 2020: 9638?9644.
[23] GIULIARI F, HASAN I, CRISTANI M, et al. Transformer networks for trajectory forecasting[C]//2020 25th International Conference on Pattern Recognition. Milan: IEEE, 2021: 10335?10342.
[24] FENG Xidong, CEN Zhepeng, HU Jianming, et al. Vehicle trajectory prediction using intention-based conditional variational autoencoder[C]//2019 IEEE Intelligent Transportation Systems Conference. Auckland: IEEE, 2019: 3514?3519.
[25] ROY D, ISHIZAKA T, MOHAN C K, et al. Vehicle trajectory prediction at intersections using interaction based generative adversarial networks[C]//2019 IEEE Intelligent Transportation Systems Conference. Auckland: IEEE, 2019: 2318?2323.
[26] GUPTA A, JOHNSON J, LI Feifei, et al. Social GAN: socially acceptable trajectories with generative adversarial networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 2255?2264.
[27] SADEGHIAN A, KOSARAJU V, SADEGHIAN A, et al. SoPhie: an attentive GAN for predicting paths compliant to social and physical constraints[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2020: 1349?1358.
[28] LEE N, CHOI W, VERNAZA P, et al. DESIRE: distant future prediction in dynamic scenes with interacting agents[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2165?2174.
[29] MANGALAM K, GIRASE H, AGARWAL S, et al. It is not the journey but the destination: endpoint conditioned trajectory prediction[C]//Computer Vision – ECCV 2020: 16th European Conference. Glasgow: ACM, 2020: 759–776.
[30] KINGMA D P, MOHAMED S, REZENDE D J, et al. Semi-supervised learning with deep generative models[C]//Advances in Neural Information Processing Systems. Montreal: NIPS, 2014: 3581?3589.
[31] 陈希亮, 曹雷, 何明, 等. 深度逆向强化学习研究综述[J]. 计算机工程与应用, 2018, 54(5): 24–35
CHEN Xiliang, CAO Lei, HE Ming, et al. Overview of deep inverse reinforcement learning[J]. Computer engineering and applications, 2018, 54(5): 24–35
[32] COLYAR J, HALKIAS J. Us highway 101 dataset: federal highway administration research and technology fact sheet [EB/OL]. (2007?09?08)[2022?05?20].https://www.fhwa.dot.gov/publications/research/operations/07030/index.cfm.
[33] COLYAR J, HALKIAS J. Us highway 80 dataset, federal highway administration[EB/OL]. (2006?12?01) [2022?05?20].https://rosap.ntl.bts.gov/view/dot/38708.
相似文献/References:
[1]申凯,王晓峰,杨亚东.基于双向消息链路卷积网络的显著性物体检测[J].智能系统学报,2019,14(6):1152.[doi:10.11992/tis.201812003]
 SHEN Kai,WANG Xiaofeng,YANG Yadong.Salient object detection based on bidirectional message link convolution neural network[J].CAAI Transactions on Intelligent Systems,2019,14():1152.[doi:10.11992/tis.201812003]
[2]赵文清,程幸福,赵振兵,等.注意力机制和Faster RCNN相结合的绝缘子识别[J].智能系统学报,2020,15(1):92.[doi:10.11992/tis.201907023]
 ZHAO Wenqing,CHENG Xingfu,ZHAO Zhenbing,et al.Insulator recognition based on attention mechanism and Faster RCNN[J].CAAI Transactions on Intelligent Systems,2020,15():92.[doi:10.11992/tis.201907023]
[3]申翔翔,侯新文,尹传环.深度强化学习中状态注意力机制的研究[J].智能系统学报,2020,15(2):317.[doi:10.11992/tis.201809033]
 SHEN Xiangxiang,HOU Xinwen,YIN Chuanhuan.State attention in deep reinforcement learning[J].CAAI Transactions on Intelligent Systems,2020,15():317.[doi:10.11992/tis.201809033]
[4]曾碧卿,韩旭丽,王盛玉,等.层次化双注意力神经网络模型的情感分析研究[J].智能系统学报,2020,15(3):460.[doi:10.11992/tis.201812017]
 ZENG Biqing,HAN Xuli,WANG Shengyu,et al.Hierarchical double-attention neural networks for sentiment classification[J].CAAI Transactions on Intelligent Systems,2020,15():460.[doi:10.11992/tis.201812017]
[5]莫宏伟,田朋.基于注意力融合的图像描述生成方法[J].智能系统学报,2020,15(4):740.[doi:10.11992/tis.201910039]
 MO Hongwei,TIAN Peng.An image caption generation method based on attention fusion[J].CAAI Transactions on Intelligent Systems,2020,15():740.[doi:10.11992/tis.201910039]
[6]鲍维克,袁春.面向推荐系统的分期序列自注意力网络[J].智能系统学报,2021,16(2):353.[doi:10.11992/tis.202005028]
 BAO Weike,YUAN Chun.Recommendation system with long-term and short-term sequential self-attention network[J].CAAI Transactions on Intelligent Systems,2021,16():353.[doi:10.11992/tis.202005028]
[7]洪恺临,曹江涛,姬晓飞.改进Center-Net网络的自主喷涂机器人室内窗户检测[J].智能系统学报,2021,16(3):425.[doi:10.11992/tis.202005016]
 HONG Kailin,CAO Jiangtao,JI Xiaofei.Indoor window detection of autonomous spraying robot based on improved CenterNet network[J].CAAI Transactions on Intelligent Systems,2021,16():425.[doi:10.11992/tis.202005016]
[8]张勇,高大林,巩敦卫,等.用于关系抽取的注意力图长短时记忆神经网络[J].智能系统学报,2021,16(3):518.[doi:10.11992/tis.202008036]
 ZHANG Yong,GAO Dalin,GONG Dunwei,et al.Attention graph long short-term memory neural network for relation extraction[J].CAAI Transactions on Intelligent Systems,2021,16():518.[doi:10.11992/tis.202008036]
[9]陈新元,谢晟祎,陈庆强,等.结合卷积特征提取和路径语义的知识推理[J].智能系统学报,2021,16(4):729.[doi:10.11992/tis.202008007]
 CHEN Xinyuan,XIE Shengyi,CHEN Qingqiang,et al.Knowledge-based inference on convolutional feature extraction and path semantics[J].CAAI Transactions on Intelligent Systems,2021,16():729.[doi:10.11992/tis.202008007]
[10]张恒,何文玢,何军,等.医学知识增强的肿瘤分期多任务学习模型[J].智能系统学报,2021,16(4):739.[doi:10.11992/tis.202010005]
 ZHANG Heng,HE Wenbin,HE Jun,et al.Multi-task tumor stage learning model with medical knowledge enhancement[J].CAAI Transactions on Intelligent Systems,2021,16():739.[doi:10.11992/tis.202010005]

备注/Memo

收稿日期:2022-01-14。
基金项目:国家重点研发计划项目(2021YFB1600501);国家自然科学基金项目(61906038);中央高校基本科研业务费专项资金项目(2242021R41184).
作者简介:赵靖文,硕士研究生,主要研究方向为道路场景下多目标轨迹预测。;李煊鹏,副教授,博士,主要研究方向为道路场景下的环境感知、行为预测及因果推理,主持和参与国家级及省部级项目8项。;张为公,教授,主要研究方向为智能汽车技术、车辆机电一体化技术、车辆测试技术。
通讯作者:李煊鹏.E-mail:li_xuanpeng@seu.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com