[1]卢娟,陈纯毅.融合递归自编解码器的蒙卡画面重构降噪方法[J].智能系统学报,2023,18(3):459-467.[doi:10.11992/tis.202112011]
LU Juan,CHEN Chunyi.A denoised method by fusing recursive auto-encoder decorder for Monte Carlo rendering image reconstruction[J].CAAI Transactions on Intelligent Systems,2023,18(3):459-467.[doi:10.11992/tis.202112011]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
18
期数:
2023年第3期
页码:
459-467
栏目:
学术论文—机器学习
出版日期:
2023-07-05
- Title:
-
A denoised method by fusing recursive auto-encoder decorder for Monte Carlo rendering image reconstruction
- 作者:
-
卢娟, 陈纯毅
-
长春理工大学 计算机科学技术学院, 吉林 长春 130022
- Author(s):
-
LU Juan, CHEN Chunyi
-
School of Computer Science and Technology, Changchun University of Science and Technology, Changchun 130022, China
-
- 关键词:
-
递归残差网络; 多尺度卷积; 生成对抗网络; 蒙特卡罗渲染画面; 图像处理; 图像去噪; 深度学习; 自编码网络
- Keywords:
-
recursive residual network; multi-scale convolution; generative adversarial networks; Monte Carlo rendering screen; image processing; image denoising; deep learning; auto-encoder network
- 分类号:
-
TP183
- DOI:
-
10.11992/tis.202112011
- 摘要:
-
针对生成对抗模型降噪结果出现的伪影和模糊问题,提出一种基于对抗生成递归自编码器的蒙卡渲染画面降噪方法。在模型上,设计多尺度卷积编码结构,以多尺度残差自编码模型为生成器,通过组合连接实现不同层次特征提取,融合不同感受野的特征信息。以设计的递归残差网络模型为判别器,判断蒙卡渲染画面真伪,在对抗中提高网络性能。以端到端的方式将辅助信息特征、含有噪声的蒙卡画面和8192采样率下的画面输入到融合递归自编解码器中进行降噪处理。实验表明,该方法在测试场景下的平均峰值信噪比为32.44 dB,比生成对抗网络方法和残差网络方法分别提升4.80%和3.13%;平均结构相似性为0.92,比2种已有的算法分别提高2.54%和1.01%。
- Abstract:
-
Aiming at the problem of artifacts and blurring in the noise reduction results of generative adversarial model, a noise reduction method for Monte Carlo rendering image based on generative adversarial recurrent auto-encoder is proposed in this paper. On the model, the multi-scale convolutional coding structure is designed, and the multi-scale residual auto-encoder model is used as the generator. The feature extraction at different levels is realized by combination connection, fusing the feature information of different receptive fields. The designed recursive residual network model is used as the discriminator to judge the authenticity of the Monte Carlo rendering picture and improve the network performance in the confrontation. In an end-to-end way, the auxiliary information features, the noise-containing Monte Carlo pictures and the pictures with the sampling rate of 8192 are input into the recursive auto-encoder decoder for noise reduction. Experiments show that the average peak signal-to-noise ratio of this method is 32.44 dB in the test scenario, which is 4.80% and 3.13% higher than the generative adversarial network method and the residual network method, respectively. The average structural similarity is 0.92, which is 2.54 % and 1.01 % higher than the existing two algorithms, respectively.
备注/Memo
收稿日期:2021-12-06。
基金项目:吉林省科技发展计划项目(20190302113GX).
作者简介:卢娟,硕士研究生,主要研究方向为深度学习、图像降噪;陈纯毅,教授,博士生导师,博士,中国图象图形学学会虚拟现实专委会委员、中国计算机学会会员。主要研究方向为虚拟现实、特种电影和光电系统仿真;承担过国家自然科学基金、国家重点研发计划、国家科技支撑计划、863计划、973计划等国家高层次项目,发表学术论文60余篇
通讯作者:陈纯毅.E-mail:2306915844@qq.com
更新日期/Last Update:
1900-01-01