[1]丁维昌,施俊,王骏.自监督对比特征学习的多模态乳腺超声诊断[J].智能系统学报,2023,18(1):66-74.[doi:10.11992/tis.202111052]
 DING Weichang,SHI Jun,WANG Jun.Multi-modality ultrasound diagnosis of the breast with self-supervised contrastive feature learning[J].CAAI Transactions on Intelligent Systems,2023,18(1):66-74.[doi:10.11992/tis.202111052]
点击复制

自监督对比特征学习的多模态乳腺超声诊断

参考文献/References:
[1] CHENG H D, SHAN Juan, JU Wen, et al. Automated breast cancer detection and classification using ultrasound images: a survey[J]. Pattern recognition, 2010, 43(1): 299–317.
[2] 龚勋, 杨菲, 杜章锦, 等. 甲状腺、乳腺超声影像自动分析技术综述[J]. 软件学报, 2020, 31(7): 2245–2282
GONG Xun, YANG Fei, DU Zhangjin, et al. Survey of automatic ultrasonographic analysis for thyroid and breast[J]. Journal of software, 2020, 31(7): 2245–2282
[3] HUANG Qinghua, ZHANG Fan, LI Xuelong. Machine learning in ultrasound computer-aided diagnostic systems: a survey[J]. BioMed research international, 2018, 2018: 5137904.
[4] 郑光远, 刘峡壁, 韩光辉. 医学影像计算机辅助检测与诊断系统综述[J]. 软件学报, 2018, 29(5): 1471–1514
ZHENG Guangyuan, LIU Xiabi, HAN Guanghui. Survey on medical image computer aided detection and diagnosis systems[J]. Journal of software, 2018, 29(5): 1471–1514
[5] SIGRIST R M S, LIAU J, KAFFAS A E, et al. Ultrasound elastography: review of techniques and clinical applications[J]. Theranostics, 2017, 7(5): 1303–1329.
[6] 刘飞, 张俊然, 杨豪. 基于深度学习的医学图像识别研究进展[J]. 中国生物医学工程学报, 2018, 37(01): 86–94
LIU Fei, ZHANG Junran, YANGHao. Advances in medical image recognition based on deep learning[J]. Journal of biomedical engineering, 2018, 37(01): 86–94
[7] 高歌, 马帅, 王霄英. 计算机辅助诊断在医学影像诊断中的基本原理和应用进展[J]. 放射学实践, 2016, 31(12): 1127–1129
GAO Ge, MA Shuai, WANG Xiaoying. Basic principle and application progress of computer aided diagnosis in medical image diagnosis[J]. Radiologic practice, 2016, 31(12): 1127–1129
[8] 周涛, 陆惠玲, 陈志强, 等. 多模态医学影像融合识别技术研究进展[J]. 生物医学工程学杂志, 2013, 30(05): 1117–1122
ZHOU Tao, LU Huiling, CHEN Zhiqiang, et al. Research progress of multimodal medical image fusion recognition technology[J]. Journal of Biomedical Engineering, 2013, 30(05): 1117–1122
[9] JING Longlong, TIAN Yingli. Self-supervised visual feature learning with deep neural networks: a survey[J]. IEEE transactions on pattern analysis and machine intelligence, 2021, 43(11): 4037–4058.
[10] HE Kaiming, FAN Haoqi, WU Yuxin, et al. Momentum contrast for unsupervised visual representation learning[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 9726?9735.
[11] CHEN Ting, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations[C]//ICML’20: Proceedings of the 37th International Conference on Machine Learning. New York: ACM, 2020: 1597-1607.
[12] MISRA I, VAN DER MAATEN L. Self-supervised learning of pretext-invariant representations[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 6706?6716.
[13] GRILL J B, STRUB F, ALTCHé F, et al. Bootstrap your own latent-a new approach to self-supervised learning[J]. Advances in neural information processing systems, 2020(33): 21271–21284.
[14] GIDARIS S, SINGH P, KOMODAKIS N. Unsupervised representation learning by predicting image rotations[EB/OL]. (2018?03?21)[2021?11?29].https://arxiv.org/abs/1803.07728.
[15] PATHAK D, KR?HENBüHL P, DONAHUE J, et al. Context encoders: feature learning by inpainting[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 2536?2544.
[16] NOROOZI M, FAVARO P. Unsupervised learning of visual representations by solving jigsaw puzzles[M]//Computer Vision – ECCV 2016. Cham: Springer International Publishing, 2016: 69?84.
[17] ZHUANG Xinrui, LI Yuexiang, HU Yifan, et al. Self-supervised feature learning for 3D medical images by playing a rubik’s cube[M]//Lecture Notes in Computer Science. Cham: Springer International Publishing, 2019: 420?428.
[18] BAI Wenjia, CHEN Chen, TARRONI G, et al. Self-supervised learning for cardiac MR image segmentation by anatomical position prediction[M]//Lecture Notes in Computer Science. Cham: Springer International Publishing, 2019: 541?549.
[19] BLENDOWSKI M, NICKISCH H, HEINRICH M P. How to learn from unlabeled volume data: self-supervised 3D context feature learning[M]//Lecture Notes in Computer Science. Cham: Springer International Publishing, 2019: 649?657.
[20] SPITZER H, KIWITZ K, AMUNTS K, et al. Improving cytoarchitectonic segmentation of human brain areas with self-supervised Siamese networks[M]//Medical Image Computing and Computer Assisted Intervention – MICCAI 2018. Cham: Springer International Publishing, 2018: 663-671.
[21] HADSELL R, CHOPRA S, LECUN Y. Dimensionality reduction by learning an invariant mapping[C]//2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2006: 1735?1742.
[22] DOSOVITSKIY A, FISCHER P, SPRINGENBERG J T, et al. Discriminative unsupervised feature learning with exemplar convolutional neural networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2016, 38(9): 1734–1747.
[23] WU Zhirong, XIONG Yuanjun, YU S X, et al. Unsupervised feature learning via non-parametric instance discrimination[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 3733?3742.
[24] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770?778.
[25] HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network[EB/OL]. (2015?03?09)[2021?11?29].https://arxiv.org/abs/1503.02531.
[26] VAN der MAATEN, LAURENS, HINTON Geoffrey. Visualizing data using t-SNE[J]. Journal of machine learning research, 2008, 9(11).
[27] SHIN S Y, LEE S, YUN I D, et al. Joint weakly and semi-supervised deep learning for localization and classification of masses in breast ultrasound images[J]. IEEE transactions on medical imaging, 2019, 38(3): 762–774.
[28] YAP M H, GOYAL M, OSMAN F M, et al. Breast ultrasound lesions recognition: end-to-end deep learning approaches[J]. Journal of medical imaging, 2018, 6(1): 011007.
[29] YU Chaohui, WANG Jindong, CHEN Yiqiang, et al. Transfer learning with dynamic adversarial adaptation network[C]//2019 IEEE International Conference on Data Mining. Beijing: IEEE, 2019: 778?786.
[30] ZHU Yongchun, ZHUANG Fuzhen, WANG Jindong, et al. Deep subdomain adaptation network for image classification[J]. IEEE transactions on neural networks and learning systems, 2021, 32(4): 1713–1722.
[31] CHEN Chao, CHEN Zhihong, JIANG Boyuan, et al. Joint domain alignment and discriminative feature learning for unsupervised deep domain adaptation[J]. Proceedings of the AAAI conference on artificial intelligence, 2019, 33: 3296–3303.
[32] YE Mang, ZHANG Xu, YUEN P C, et al. Unsupervised embedding learning via invariant and spreading instance feature[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 6203?6212.
[33] HéNAFF O J, SRINIVAS A, FAUW J, et al. Data-efficient image recognition with contrastive predictive coding[C]// Proceedings of the 37th International Conference on Machine Learning. JMLR, 2020, 119: 4182?4192
相似文献/References:
[1]杜航原,张晶,王文剑.一种深度自监督聚类集成算法[J].智能系统学报,2020,15(6):1113.[doi:10.11992/tis.202006050]
 DU Hangyuan,ZHANG Jing,WANG Wenjian.A deep self-supervised clustering ensemble algorithm[J].CAAI Transactions on Intelligent Systems,2020,15():1113.[doi:10.11992/tis.202006050]
[2]陈丽,马楠,逄桂林,等.多视角数据融合的特征平衡YOLOv3行人检测研究[J].智能系统学报,2021,16(1):57.[doi:10.11992/tis.202010003]
 CHEN Li,MA Nan,PANG Guilin,et al.Research on multi-view data fusion and balanced YOLOv3 for pedestrian detection[J].CAAI Transactions on Intelligent Systems,2021,16():57.[doi:10.11992/tis.202010003]
[3]黎建宇,詹志辉.面向大规模特征选择的自监督数据驱动粒子群优化算法[J].智能系统学报,2023,18(1):194.[doi:10.11992/tis.202206008]
 LI Jianyu,ZHAN Zhihui.A self-supervised data-driven particle swarm optimization approach for large-scale feature selection[J].CAAI Transactions on Intelligent Systems,2023,18():194.[doi:10.11992/tis.202206008]
[4]刘嘉轩,胡非易,张辉,等.上下文空间与实例信息的皮肤镜图像自监督分类[J].智能系统学报,2023,18(4):783.[doi:10.11992/tis.202211010]
 LIU Jiaxuan,HU Feiyi,ZHANG Hui,et al.Dermoscopic images classification based on context and instance-level feature of self-supervised learning[J].CAAI Transactions on Intelligent Systems,2023,18():783.[doi:10.11992/tis.202211010]
[5]李旭,蔡彪,胡能兵.基于三元互信息的图对比学习方法研究[J].智能系统学报,2024,19(5):1257.[doi:10.11992/tis.202308004]
 LI Xu,CAI Biao,HU Nengbing.Research on graph contrastive learning method based on ternary mutual information[J].CAAI Transactions on Intelligent Systems,2024,19():1257.[doi:10.11992/tis.202308004]
[6]王健宗,张旭龙,姜桂林,等.基于分层联邦框架的音频模型生成技术研究[J].智能系统学报,2024,19(5):1331.[doi:10.11992/tis.202306054]
 WANG Jianzong,ZHANG Xulong,JIANG Guilin,et al.Research on audio model generation technology based on a hierarchical federated framework[J].CAAI Transactions on Intelligent Systems,2024,19():1331.[doi:10.11992/tis.202306054]

备注/Memo

收稿日期:2021-11-29。
基金项目:上海市自然科学基金项目(20ZR1419900).
作者简介:丁维昌,硕士研究生,主要研究方向为深度学习、医学图像处理;施俊,教授,主要研究方向为医学图像分析与处理、模式识别;王骏,副教授,主要研究方向为机器学习、医学影像智能分析
通讯作者:王骏.E-mail:wangjun_shu@shu.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com