[1]郭茂祖,王偲佳,王鹏跃,等.基于卫星图的小样本街区品质评估[J].智能系统学报,2022,17(6):1254-1262.[doi:10.11992/tis.202111049]
 GUO Maozu,WANG Sijia,WANG Pengyue,et al.Small sample block quality evaluation based on satellite images[J].CAAI Transactions on Intelligent Systems,2022,17(6):1254-1262.[doi:10.11992/tis.202111049]
点击复制

基于卫星图的小样本街区品质评估

参考文献/References:
[1] RUNDLE A G, BADER M D M, RICHARDS C A, et al. Using Google Street View to audit neighborhood environments[J]. American journal of preventive medicine, 2011, 40(1): 94–100.
[2] NAIK N, PHILIPOOM J, RASKAR R, et al. Streetscore: predicting the perceived safety of one million streetscapes[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Columbus: IEEE, 2014 : 793-799.
[3] EWING R, CERVERO R. Travel and the built environment[J]. Journal of the American planning association, 2010, 76(3): 265–294.
[4] 韩君伟. 步行街道景观视觉评价研究[D]. 成都: 西南交通大学, 2018.
HAN Junwei. A visual evaluation study for walking streetscape[D]. Chengdu: Southwest Jiaotong University, 2018.
[5] 龙瀛, 周垠. 街道活力的量化评价及影响因素分析: 以成都为例[J]. 新建筑, 2016(1): 52–57
LONG Ying, ZHOU Yin. Quantitative evaluation on street vibrancy and its impact factors: a case study of Chengdu[J]. New architecture, 2016(1): 52–57
[6] 唐婧娴, 龙瀛. 特大城市中心区街道空间品质的测度: 以北京二三环和上海内环为例[J]. 规划师, 2017, 33(2): 68–73
TANG Jingxian, LONG Ying. Metropolitan street space quality evaluation: second and third ring of Beijing, inner ring of Shanghai[J]. Planners, 2017, 33(2): 68–73
[7] 樊钧, 唐皓明, 叶宇. 街道慢行品质的多维度评价与导控策略: 基于多源城市数据的整合分析[J]. 规划师, 2019, 35(14): 5–11
FAN Jun, TANG Haoming, YE Yu. Multi-dimensional evaluation and guidance for quality pedestrian street space: an analysis of multi-sourced urban data[J]. Planners, 2019, 35(14): 5–11
[8] WANG Yaqing, YAO Quanming, KWOK J T, et al. Generalizing from a few examples: a survey on few-shot learning[J]. ACM computing surveys, 2021, 53(3): 63.
[9] VINYALS O, BLUNDELL C, LILLICRAP T, et al. Matching networks for one shot learning[C]//NIPS’16: Proceedings of the 30th International Conference on Neural Information Processing Systems. New York: ACM, 2016: 3637-3645.
[10] KOCH G, ZEMEL R, SALAKHUTDINOV R. Siamese neural networks for one-shot image recognition[EB/OL]. [2021-07-13]. http://www.cs.utoronto.ca/~rsalakhu/papers/oneshot1.pdf.
[11] SNELL J, SWERSKY K, ZEMEL R S. Prototypical networks for few-shot learning[C]//In Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS’17). New York: CAI, 2017: 4080–4090.
[12] SUNG F, YANG Yongxin, ZHANG Li, et al. Learning to compare: relation network for few-shot learning[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 1199-1208.
[13] REN M, TRIANTAFILLOU E, RAVI S, et al. Meta-learning for semi-supervised few-shot classification[EB/OL]. (2018-01-01)[ 2021-07-13]. https://doc.taixueshu.com/foreign/arXiv180300676.html.
[14] SIMON C, KONIUSZ P, HARANDI M. Projective subspace networks for few-shot learning[C]// The 7th International Conference on Learning Representations (ICLR2019). New Orleans, 2019.
[15] YOON S W, SEO J, MOON J. TapNet: neural network augmented with task-adaptive projection for few-shot learning[EB/OL]. (2019-01-01)[ 2021-07-13]. https://arxiv.org/abs/1905.06549.
[16] DEVOS A, GROSSGLAUSER M. Subspace networks for few-shot classification[EB/OL]. (2019-03-31)[ 2021-07-13]. https://arxiv.org/abs/1905.13613.
[17] SIMON C, KONIUSZ P, NOCK R, et al. Adaptive subspaces for few-shot learning[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle: IEEE, 2020: 4135-4144.
[18] EDELMAN A, ARIAS T A, SMITH S T. The geometry of algorithms with orthogonality constraints[J]. SIAM journal on matrix analysis and applications, 1998, 20(2): 303–353.
[19] 李美艳. 基于空间句法的城市街道空间研究: 以北京市展览馆路内街道为例[J]. 中国建筑装饰装修, 2021(9): 128–129
LI Meiyan. Research on urban street space based on Spatial Syntax: take the sub district inside the exhibition hall road of Beijing as an example[J]. Interior architecture of China, 2021(9): 128–129
[20] 李美艳, 张润萌, 欧阳文. 商业POI布局和城市街区空间结构的相关性研究: 以北京西城区展览馆路街区为例[J]. 北京规划建设, 2021(5): 125–127
LI Meiyan, ZHANG Runmeng, OUYANG Wen. Study on the correlation between commercial POI layout and urban block spatial structure: a case study of zhanguan road block in Xicheng District of Beijing[J]. Beijing planning review, 2021(5): 125–127
[21] FINN C, ABBEEL P, LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[EB/OL]. (2019-03-31)[ 2021-07-13]. https://arxiv.org/abs/1703.03400.
[22] 张秋雁, 杨忠, 姜遇红, 等. 一种基于CNN的航拍输电线路图像分类方法[J]. 应用科技, 2019, 46(6): 41–45
ZHANG Qiuyan, YANG Zhong, JIANG Yuhong, et al. CNN-based aerial image classification method for aerial transmission lines[J]. Applied science and technology, 2019, 46(6): 41–45
[23] 杨学峰, 赵冬娥. 一种多尺度压缩感知的遥感图像超分辨重建方法[J]. 应用科技, 2020, 47(4): 20–25
YANG Xuefeng, ZHAO Donge. A multi-scale copressive sensing based super-resolution reconstruction method for remote sensing images[J]. Applied science and technology, 2020, 47(4): 20–25
[24] 陆瑶, 王立国, 石瑶. 小样本下基于空谱特征增强的高光谱图像分类[J]. 哈尔滨工程大学学报, 2022, 43(3): 436–443
LU Yao, WANG Liguo, SHI Yao. Classification of hyperspectral images with small-sized samples based on spatial-spectral feature enhancement[J]. Journal of Harbin Engineering University, 2022, 43(3): 436–443
[25] 于凌涛, 夏永强, 闫昱晟, 等. 利用卷积神经网络分类乳腺癌病理图像[J]. 哈尔滨工程大学学报, 2021, 42(4): 567–573
YU Lingtao, XIA Yongqiang, YAN Yusheng, et al. Breast cancer pathological image classification based on a convolutional neural network[J]. Journal of Harbin Engineering University, 2021, 42(4): 567–573

备注/Memo

收稿日期:2021-11-26。
基金项目:国家自然科学基金面上项目(61871020);北京市属高校高水平创新团队建设计划项目(IDHT20190506).
作者简介:郭茂祖,教授,博士生导师,主要研究方向为机器学习、智慧城市、生物信息学。主持和参与国家自然科学基金面上项目、北京市属高校高水平创新团队建设计划项目和北京市教委科技计划重点项目等。吴文俊人工智能科学技术奖获得者。曾获得教育部高等学校科学研究优秀成果自然科学二等奖、省科技进步二等奖等。发表学术论文200余篇;王偲佳,硕士研究生,主要研究方向为城市计算与人工智能;王鹏跃,博士研究生,主要研究方向为城市计算与人工智能
通讯作者:赵玲玲.E-mail:zhaoll@hit.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com