[1]陆升阳,赵怀林,刘华平.场景图谱驱动目标搜索的多智能体强化学习[J].智能系统学报,2023,18(1):207-215.[doi:10.11992/tis.202111034]
LU Shengyang,ZHAO Huailin,LIU Huaping.Multi-agent reinforcement learning for scene graph-driven target search[J].CAAI Transactions on Intelligent Systems,2023,18(1):207-215.[doi:10.11992/tis.202111034]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
18
期数:
2023年第1期
页码:
207-215
栏目:
吴文俊人工智能科学技术奖论坛
出版日期:
2023-01-05
- Title:
-
Multi-agent reinforcement learning for scene graph-driven target search
- 作者:
-
陆升阳1, 赵怀林1, 刘华平2
-
1. 上海应用技术大学 电气与电子工程学院,上海 201418;
2. 清华大学 计算机科学与技术系,北京 100084
- Author(s):
-
LU Shengyang1, ZHAO Huailin1, LIU Huaping2
-
1. School of electrical and Electronic Engineering, Shanghai Institute of Technology, Shanghai 201418, China;
2. Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
-
- 关键词:
-
多智能体; 强化学习; 视觉语义导航; 场景图谱; 先验知识; 分布式探索; 集中式训练; 目标搜索
- Keywords:
-
multi-agent; reinforcement learning; visual semantic navigation; scene graph; prior knowledge; distributed exploration; centralized training; target search
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.202111034
- 摘要:
-
针对强化学习在视觉语义导航任务中准确率低,导航效率不高,容错率太差,且部分只适用于单智能体等问题,提出一种基于场景先验的多智能体目标搜索算法。该算法利用强化学习,将单智能体系统拓展到多智能体系统上将场景图谱作为先验知识辅助智能体团队进行视觉探索,利用集中式训练分布式探索的多智能体强化学习的方法以大幅度提升智能体团队的准确率和工作效率。通过在AI2THOR中进行训练测试,并与其他算法进行对比证明此方法无论在目标搜索的准确率还是效率上都优先于其他算法。
- Abstract:
-
To solve the problems of reinforcement learning in the visual semantic navigation task, such as low accuracy, low navigation efficiency, poor fault tolerance rate, and the suitability of only some problems for a single agent, we propose a multi-agent target search algorithm based on scene prior. This algorithm extends the single-agent system to a multi-agent system through reinforcement learning. It mainly includes two aspects: first, a scene atlas is used as prior knowledge to assist the agent team in visual exploration; second, the multi-agent reinforcement learning method of centralized training and distributed exploration is used to greatly improve the accuracy and work efficiency of the agent team. Training tests in AI2THOR and comparison with other algorithms prove that this method is superior to other algorithms in target search accuracy and efficiency.
备注/Memo
收稿日期:2021-11-17。
基金项目:国家自然科学基金项目(U1613212)
作者简介:陆升阳,硕士研究生,主要研究方向为多智能体系统,多智能体强化学习;赵怀林,教授,博士,主要研究方向为机器人学、多智能体系统和人工智能;刘华平,副教授,博士生导师,博士,中国人工智能学会理事、中国人工智能学会认知系统与信息处理专业委员会秘书长,主要研究方向为机器人感知、学习与控制、多模态信息融合。获吴文俊人工智能科技进步奖二等奖,主持国家自然科学基金重点项目2项
通讯作者:刘华平.E-mail:hpliu@tsinghua.edu.cn
更新日期/Last Update:
1900-01-01