[1]王潇棠,闫河,刘建骐,等.一种边缘梯度插值的双分支deeplabv3+语义分割模型[J].智能系统学报,2023,18(3):604-612.[doi:10.11992/tis.202111023]
WANG Xiaotang,YAN He,LIU Jianqi,et al.A new deeplabv3+ semantic segmentation model of edge gradient interpolation with double branch structure[J].CAAI Transactions on Intelligent Systems,2023,18(3):604-612.[doi:10.11992/tis.202111023]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
18
期数:
2023年第3期
页码:
604-612
栏目:
学术论文—知识工程
出版日期:
2023-07-05
- Title:
-
A new deeplabv3+ semantic segmentation model of edge gradient interpolation with double branch structure
- 作者:
-
王潇棠, 闫河, 刘建骐, 张烨
-
重庆理工大学 两江人工智能学院, 重庆 401135
- Author(s):
-
WANG Xiaotang, YAN He, LIU Jianqi, ZHANG Ye
-
School of Artificial Intelligence, Chongqing University of Technology, Chongqing 401135, China
-
- 关键词:
-
边缘梯度; 图像插值; 双三次插值; 双线性插值; deeplabv3+; 双分支结构; 解码器; 语义分割
- Keywords:
-
edge gradient; image interpolation; bicubic interpolation; bilinear interpolation; deeplabv3+; dual branch structure; decoder; semantic segmentation
- 分类号:
-
TP391;TP181
- DOI:
-
10.11992/tis.202111023
- 摘要:
-
针对deeplabv3+解码器采用双线性插值的单一分支结构易导致图像的高频分量损失、语义分割精度不高的问题,采用索伯(Sobel)算子计算各像素点沿不同方向的边缘梯度值并结合双三次插值算法,提出一种边缘梯度插值方法;在此基础上,对1/8输入图像与编码器输出采用边缘梯度2倍上插值再经特征融合和边缘梯度2倍上插值操作,并与1/4输入图像经特征融合后再进行边缘梯度4倍上插值操作,从而提出一种边缘梯度插值的双分支deeplabv3+意义分割模型。对比实验结果表明,本文方法在VOC2012数据集上较原分割模型平均交并比指标有2.2%的提升,且对图像边缘细节分割有较好的视觉效果。
- Abstract:
-
Aiming at the problem that the single branch structure of deeplabv3 + decoder with bilinear interpolation is easy to lead to the loss of high-frequency components of an image and the low accuracy of semantic segmentation, the Sobel operator is used to calculate the edge gradient values of each pixel along different directions, and by combination with bicubic interpolation algorithm, an edge gradient interpolation method is proposed. On this basis, the 1/8 input image and the encoder output are interpolated up to twice the edge gradient, then interpolated up to twice the edge gradient through feature fusion and edge gradient interpolation, and then interpolated up to four times the edge gradient after feature fusion with the 1/4 input image, thereby a double branch deeplabv3 +semantic segmentation model with edge gradient interpolation is established. The comparative experimental results show that the proposed method has improved MIOU indicator by 2.2% on the VOC2012 dataset compared with the original model, and has a better visual effect on image edge detail segmentation.
备注/Memo
收稿日期:2021-11-12。
基金项目:国家重点研发计划“智能机器人”重点专项项目(2018YFB1308602);国家自然科学基金面上项目(61173184);重庆市自然科学基金项目(cstc2018jcyjAX0694).
作者简介:王潇棠,硕士研究生,主要研究方向为机器视觉、语义分割、图像处理、三维重建、人工智能;闫河,教授,博士,主要研究方向为小波分析、压缩感知、机器视觉与视觉测量、模式识别、人工智能。近5年主持国家自然科学基金面上项目1项、省部级科技项目4项,国家重点研发计划2018智能机器人重大专项项目子课题1项(合作单位负责人)、企业项目7项;获省部级科技进步三等奖1项;获重庆市科技进步三等奖1项。获发明专利授权5项,申请发明专利12项。出版学术专著7部(其中第一作者4部),发表学术论文70余篇。;刘建骐,硕士研究生,主要研究方向为图像处理、目标检测、视觉测量、人工智能
通讯作者:闫河.E-mail:cqyanhe@163.com
更新日期/Last Update:
1900-01-01