[1]何罗苏阳,熊伟丽.助训练框架下的半监督软测量建模方法[J].智能系统学报,2023,18(2):231-239.[doi:10.11992/tis.202111019]
 HE Luosuyang,XIONG Weili.Semi-supervised soft sensor modeling method under the help-training framework[J].CAAI Transactions on Intelligent Systems,2023,18(2):231-239.[doi:10.11992/tis.202111019]
点击复制

助训练框架下的半监督软测量建模方法

参考文献/References:
[1] GE Zhiqiang, SONG Zhihuan, GAO Furong. Review of recent research on data-based process monitoring[J]. Industrial & engineering chemistry research, 2013, 52(10): 3543–3562.
[2] 曹鹏飞, 罗雄麟. 化工过程软测量建模方法研究进展[J]. 化工学报, 2013, 64(3): 788–800
CAO Pengfei, LUO Xionglin. Modeling of soft sensor for chemical process[J]. CIESC journal, 2013, 64(3): 788–800
[3] ZHANG Yingwei, TENG Yongdong, ZHANG Yang. Complex process quality prediction using modified kernel partial least squares[J]. Chemical engineering science, 2010, 65(6): 2153–2158.
[4] RANI A, SINGH V, GUPTA J R P. Development of soft sensor for neural network based control of distillation column[J]. ISA transactions, 2013, 52(3): 438–449.
[5] RANJAN R, HUANG Biao, FATEHI A. Robust Gaussian process modeling using EM algorithm[J]. Journal of process control, 2016, 42: 125–136.
[6] YAN Weiwu, SHAO Huihe, WANG Xiaofan. Soft sensing modeling based on support vector machine and Bayesian model selection[J]. Computers & chemical engineering, 2004, 28(8): 1489–1498.
[7] 刘建伟, 刘媛, 罗雄麟. 半监督学习方法[J]. 计算机学报, 2015, 38(8): 1592–1617
LIU Jianwei, LIU Yuan, LUO Xionglin. Semi-supervised learning methods[J]. Chinese journal of computers, 2015, 38(8): 1592–1617
[8] 周志华. 基于分歧的半监督学习[J]. 自动化学报, 2013, 39(11): 1871–1878
ZHOU Zhihua. Disagreement-based semi-supervised learning[J]. Acta automatica sinica, 2013, 39(11): 1871–1878
[9] 仝小敏, 吉祥. 基于自训练的回归算法[J]. 中国电子科学研究院学报, 2017, 12(5): 498–502
TONG Xiaomin, JI Xiang. Regression algorithm based on self training[J]. Journal of China academy of electronics and information technology, 2017, 12(5): 498–502
[10] ADANKON M M, CHERIET M. Help-Training for semi-supervised support vector machines[J]. Pattern recognition, 2011, 44(9): 2220–2230.
[11] ADANKON M M, CHERIET M. Help-training semi-supervised LS-SVM[C]//2009 International Joint Conference on Neural Networks. Atlanta: IEEE, 2009: 49?56.
[12] 程康明, 熊伟丽. 一种自训练框架下的三优选半监督回归算法[J]. 智能系统学报, 2020, 15(3): 568–577
CHENG Kangming, XIONG Weili. Three-optimal semi-supervised regression algorithm under self-training framework[J]. CAAI transactions on intelligent systems, 2020, 15(3): 568–577
[13] LI Yuanqing, GUAN Cuntai, LI Huiqi, et al. A self-training semi-supervised SVM algorithm and its application in an EEG-based brain computer interface speller system[J]. Pattern recognition letters, 2008, 29(9): 1285–1294.
[14] 黄华娟. 孪生支持向量机关键问题的研究[D]. 徐州: 中国矿业大学, 2014: 29?30.
HUANG Huajuan. Research on the key problems of twin support vector machines[D]. Xuzhou: China University of Mining and Technology, 2014: 29?30.
[15] SHAO Yuanhai, ZHANG Chunhua, YANG Zhimin, et al. An ε-twin support vector machine for regression[J]. Neural computing and applications, 2013, 23(1): 175–185.
[16] 曹杰, 顾斌杰, 熊伟丽, 等. 增量式约简最小二乘孪生支持向量回归机[J]. 计算机科学与探索, 2021, 15(3): 553–563
CAO Jie, GU Binjie, XIONG Weili, et al. Incremental reduced least squares twin support vector regression[J]. Journal of frontiers of computer science and technology, 2021, 15(3): 553–563
[17] 方建文. 孪生支持向量回归机的研究[D]. 无锡: 江南大学, 2020: 2?5.
FANG Jianwen. Research on twin support vector regression[D]. Wuxi: Jiangnan University, 2020: 2?5.
[18] TANVEER M, SHARMA A, SUGANTHAN P N. General twin support vector machine with pinball loss function[J]. Information sciences, 2019, 494: 311–327.
[19] BAO Liang, YUAN Xiaofeng, GE Zhiqiang. Co-training partial least squares model for semi-supervised soft sensor development[J]. Chemometrics and intelligent laboratory systems, 2015, 147: 75–85.
[20] WU Di, SHANG Mingsheng, LUO Xin, et al. Self-training semi-supervised classification based on density peaks of data[J]. Neurocomputing, 2018, 275: 180–191.
[21] ZHANG Lei, YANG Lin, MA Tianwu, et al. A self-training semi-supervised machine learning method for predictive mapping of soil classes with limited sample data[J]. Geoderma, 2021, 384: 114809.
[22] YAO Le, GE Zhiqiang. Nonlinear Gaussian mixture regression for multimode quality prediction with partially labeled data[J]. IEEE transactions on industrial informatics, 2019, 15(7): 4044–4053.
[23] MENG Yanmei, LAN Qiliang, QIN J, et al. Data-driven soft sensor modeling based on twin support vector regression for cane sugar crystallization[J]. Journal of food engineering, 2019, 241: 159–165.
[24] NI?O-ADAN I, LANDA-TORRES I, MANJARRES D, et al. Soft-sensor for class prediction of the percentage of pentanes in butane at a debutanizer column[J]. Sensors (Basel, Switzerland), 2021, 21(12): 3991.
[25] 程康明, 熊伟丽. 一种双优选的半监督回归算法[J]. 智能系统学报, 2019, 14(4): 689–696
CHENG Kangming, XIONG Weili. A dual-optimal semi-supervised regression algorithm[J]. CAAI transactions on intelligent systems, 2019, 14(4): 689–696
相似文献/References:
[1]陈晓峰,王士同,曹苏群.半监督多标记学习的基因功能分析[J].智能系统学报,2008,3(1):83.
 CHEN Xiao-feng,WANG Shi-tong,CAO Su-qun.Gene function analysis of semisupervised multilabel learning[J].CAAI Transactions on Intelligent Systems,2008,3():83.
[2]王跃,杨燕,王红军.一种基于少量标签的改进迁移模糊聚类[J].智能系统学报,2016,11(3):310.[doi:10.11992/tis.201603046]
 WANG Yue,YANG Yan,WANG Hongjun.An improved transfer fuzzy clustering with few labels[J].CAAI Transactions on Intelligent Systems,2016,11():310.[doi:10.11992/tis.201603046]
[3]卞则康,王士同.基于混合距离学习的鲁棒的模糊C均值聚类算法[J].智能系统学报,2017,12(4):450.[doi:10.11992/tis.201607019]
 BIAN Zekang,WANG Shitong.Robust FCM clustering algorithm based on hybrid-distance learning[J].CAAI Transactions on Intelligent Systems,2017,12():450.[doi:10.11992/tis.201607019]
[4]闵帆,王宏杰,刘福伦,等.SUCE:基于聚类集成的半监督二分类方法[J].智能系统学报,2018,13(6):974.[doi:10.11992/tis.201711027]
 MIN Fan,WANG Hongjie,LIU Fulun,et al.SUCE: semi-supervised binary classification based on clustering ensemble[J].CAAI Transactions on Intelligent Systems,2018,13():974.[doi:10.11992/tis.201711027]
[5]曲昭伟,吴春叶,王晓茹.半监督自训练的方面提取[J].智能系统学报,2019,14(4):635.[doi:10.11992/tis.201806006]
 QU Zhaowei,WU Chunye,WANG Xiaoru.Aspects extraction based on semi-supervised self-training[J].CAAI Transactions on Intelligent Systems,2019,14():635.[doi:10.11992/tis.201806006]
[6]邓廷权,王强.半监督类保持局部线性嵌入方法[J].智能系统学报,2021,16(1):98.[doi:10.11992/tis.202003007]
 DENG Tingquan,WANG Qiang.Semi-supervised class preserving locally linear embedding[J].CAAI Transactions on Intelligent Systems,2021,16():98.[doi:10.11992/tis.202003007]

备注/Memo

收稿日期:2021-11-12。
基金项目:国家自然科学基金项目(61773182);国家重点研发计划子课题(2018YFC1603705-03).
作者简介:何罗苏阳,硕士研究生,主要研究方向为复杂工业过程建模;熊伟丽,教授,博士生导师,主要研究方向为复杂工业过程建模与监控、智能软测量技术。主持国家自然科学基金面上项目、国家自然科学基金青年项目、江苏省产学研等省部级以上纵向项目10项,授权发明专利26项,获得中国商业联合会科技进步一等奖1项,发表学术论文近百篇
通讯作者:熊伟丽. E-mail:greenpre@163.com

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com