[1]王丽娟,丁世飞,夏菁.基于多样性的多视图低秩稀疏子空间聚类算法[J].智能系统学报,2023,18(2):399-408.[doi:10.11992/tis.202110026]
WANG Lijuan,DING Shifei,XIA Jing.Multiview low-rank sparse subspace clustering based on diversity[J].CAAI Transactions on Intelligent Systems,2023,18(2):399-408.[doi:10.11992/tis.202110026]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
18
期数:
2023年第2期
页码:
399-408
栏目:
吴文俊人工智能科学技术奖论坛
出版日期:
2023-05-05
- Title:
-
Multiview low-rank sparse subspace clustering based on diversity
- 作者:
-
王丽娟1,2, 丁世飞1, 夏菁1
-
1. 中国矿业大学 计算机科学与技术学院,江苏 徐州 221116;
2. 徐州工业职业技术学院 信息工程学院,江苏 徐州 221114
- Author(s):
-
WANG Lijuan1,2, DING Shifei1, XIA Jing1
-
1. School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China;
2. School of Information Engineering, Xuzhou College of Industrial Technology, Xuzhou 221114, China
-
- 关键词:
-
多视图聚类; 子空间表示; 多样性表示; 低秩稀疏约束; 谱聚类; 机器学习; 特征学习; 数据挖掘
- Keywords:
-
multiview clustering; subspace representation; diversity representation; low-rank sparse constraint; spectral clustering; machine learning; feature learning; data mining
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.202110026
- 摘要:
-
本文主要研究如何通过挖掘多视图特征的多样性信息来促进多视图聚类,提出了基于多样性的多视图低秩稀疏子空间聚类算法。该方法直接将视图多样性概念应用于多视图低秩稀疏子空间聚类算法框架中,确保不同视图的子空间表示矩阵的多样性;为了实现多个视图聚类一致性同时达到提高聚类性能的目标,在该框架中引入谱聚类算法共同优化求解。通过对3个图像数据集的实验验证了该算法的有效性,同时其聚类的性能优于已有的单视图及多视图算法。
- Abstract:
-
This paper focuses on boosting multiview clustering by exploring the diversity of information among multiview features. A multiview clustering framework, called multiview low-rank sparse subspace clustering based on diversity, is proposed for this task. In the proposed method, the concept of diversity is successfully introduced into the framework of a multiview low-rank sparse subspace clustering algorithm to ensure that the representation matrix of different subspace views has certain differences and that the obtained information is diversified. In addition, the spectral clustering algorithm is added to the framework to achieve a joint optimization solution, which can markedly improve the clustering performance, to obtain a unified target clustering assignment. The effectiveness of the algorithm is verified by fully observing three image datasets, and the clustering performance of the proposed algorithm is better than that of the existing single-view and multiview algorithms.
备注/Memo
收稿日期:2021-10-23。
基金项目:国家自然科学基金项目(61976216, 62276265, 61672522);江苏省高等教育改革研究课题(2021JSJG488);江苏省高等职业院校专业带头人高端研修项目(2022GRGDYX087).
作者简介:王丽娟,副教授,博士,CCF会员,江苏省青蓝工程骨干教师,主要研究方向为机器学习、聚类分析。参加国家自然科学基金面上项目2项,主持省级教科研课题2项,发表学术论文12篇;丁世飞,教授,博士生导师,博士,CCF杰出会员,第八届吴文俊人工智能科学技术奖获得者,主要研究方向为人工智能与模式识别、机器学习与数据挖掘。主持国家重点基础研究计划课题1项、主持国家自然科学基金面上项目4项。出版专著5部,发表学术论文200余篇;夏菁,硕士研究生,主要研究方向为机器学习、聚类分析
通讯作者:丁世飞. E-mail:dingsf@cumt.edu.cn
更新日期/Last Update:
1900-01-01