[1]罗敏霞,徐东辉.区间值模糊推理的逻辑度量空间[J].智能系统学报,2023,18(3):613-618.[doi:10.11992/tis.202110019]
 LUO Minxia,XU Donghui.Logical metric spaces for interval-valued fuzzy reasoning[J].CAAI Transactions on Intelligent Systems,2023,18(3):613-618.[doi:10.11992/tis.202110019]
点击复制

区间值模糊推理的逻辑度量空间

参考文献/References:
[1] YING Mingsheng. Perturbation of fuzzy reasoning[J]. IEEE transactions on fuzzy systems, 1999, 7(5): 625–629.
[2] CAI Kaiyuan. Robustness of fuzzy reasoning and δ-equalities of fuzzy sets[J]. IEEE transactions on fuzzy systems, 2001, 9(5): 738–750.
[3] 李永明. 模糊系统分析[M]. 北京: 科学出版社, 2005.
[4] LI Yongming, LI Dechao, PEDRYCZ W, et al. An approach to measure the robustness of fuzzy reasoning[J]. International journal of intelligent systems, 2005, 20(4): 393–413.
[5] DAI Songsong, PEI Daowu, GUO Donghui. Robustness analysis of full implication inference method[J]. International journal of approximate reasoning, 2013, 54(5): 653–666.
[6] 金检华, 李永明, 李春泉. 模糊推理系统的鲁棒性[J]. 模糊系统与数学, 2008, 22(5): 80–91
JIN Jianhua, LI Yongming, LI Chunquan. Robustness of fuzzy reasoning[J]. Fuzzy systems and mathematics, 2008, 22(5): 80–91
[7] 王国俊. 模糊推理的全蕴涵三I算法[J]. 中国科学(E辑), 1999(1): 43–53
WANG Guojun. Fuzzy reasoning full implication triple I method[J]. Science in China (series E), 1999(1): 43–53
[8] 王国俊, 段景瑶. 适宜于展开模糊推理的两类模糊度量空间[J]. 中国科学:信息科学, 2014, 44(5): 623–632
WANG Guojun, DUAN Jingyao. Two types of fuzzy metric spaces suitable for fuzzy reasoning[J]. Scientia sinica:information science, 2014, 44(5): 623–632
[9] ZADEH L A. Theory of approximate reasoning[J]. Machine intelligence, 1970: 149-194.
[10] LI Dechao, LI Yongming, XIE Yongjian. Robustness of interval-valued fuzzy inference[J]. Information sciences, 2011, 181(20): 4754–4764.
[11] LUO Minxia, ZHANG Kai. Robustness of full implication algorithms based on interval-valued fuzzy inference[J]. International journal of approximate reasoning, 2015, 62: 61–72.
[12] LUO Minxia, ZHOU Xiaoling. Robustness of reverse triple I algorithms based on interval-valued fuzzy inference[J]. International journal of approximate reasoning, 2015, 66: 16–26.
[13] LUO Minxia, ZHOU Xiaoling. Interval-valued quintuple implication principle of fuzzy reasoning[J]. International journal of approximate reasoning, 2017, 84: 23–32.
[14] 王蓉, 惠小静, 井美. 区间值模糊推理反向三Ⅰ约束算法的鲁棒性[J]. 模糊系统与数学, 2019, 33(1): 84–91
WANG Rong, HUI Xiaojing, JING Mei. The robustness of reverse triple Ⅰ restriction methods based on interval-valued fuzzy reasoning[J]. Fuzzy systems and mathematics, 2019, 33(1): 84–91
[15] LUO Minxia, WANG Yajing. Interval-valued fuzzy reasoning full implication algorithms based on the t-representable t-norm[J]. International journal of approximate reasoning, 2020, 122: 1–8.
[16] DAVEY B A, PRIESTLEY H A. Introduction to lattices and order[M]. New York: Cambridge University Press, 1990
[17] KLEMENT E P, MESIAR R, PAP E. Triangular norms[M]. Dordrecht: Kluwer Academic Publishers, 2000
[18] HáJEK P. Metamathematics of fuzzy logic[M]. Dordrecht: Kluwer, 1998.
[19] JENEI S. A more efficient method for defining fuzzy connectives[J]. Fuzzy sets and systems, 1997, 90(1): 25–35.
[20] ALCALDE C, BURUSCO A, FUENTES-GONZáLEZ R. A constructive method for the definition of interval-valued fuzzy implication operators[J]. Fuzzy sets and systems, 2005, 153(2): 211–227.
[21] CHOUDHARY B. The elements of complex analysis[M]. New Delhi: New Age International Ltd, 1992.
[22] ZHANG Hongying, ZHANG Wenxiu, MEI Changlin. Entropy of interval-valued fuzzy sets based on distance and its relationship with similarity measure[J]. Knowledge-based systems, 2009, 22(6): 449–454.
[23] MUNKRES J R. Topology[M]. 2nd ed. Upper Saddle River: Prentice Hall, 2000
相似文献/References:
[1]王国胤,张清华,胡? 军.粒计算研究综述[J].智能系统学报,2007,2(6):8.
 WANG Guo-yin,ZHANG Qing-hua,HU Jun.An overview of granular computing[J].CAAI Transactions on Intelligent Systems,2007,2():8.
[2]卿铭,孙晓梅.一种新的聚类有效性函数:模糊划分的模糊熵[J].智能系统学报,2015,10(1):75.[doi:10.3969/j.issn.1673-4785.201410004]
 QING Ming,SUN Xiaomei.A new clustering effectiveness function: fuzzy entropy of fuzzy partition[J].CAAI Transactions on Intelligent Systems,2015,10():75.[doi:10.3969/j.issn.1673-4785.201410004]
[3]刘洪伟,王艳平.区间直觉模糊粗糙集的不确定性研究[J].智能系统学报,2014,9(5):613.[doi:10.3969/j.issn.1673-4785.201307007]
 LIU Hongwei,WANG Yanping.Research on uncertainty of interval-valued intuitionistic fuzzy rough sets[J].CAAI Transactions on Intelligent Systems,2014,9():613.[doi:10.3969/j.issn.1673-4785.201307007]
[4]苗夺谦,张清华,钱宇华,等.从人类智能到机器实现模型——粒计算理论与方法[J].智能系统学报,2016,11(6):743.[doi:10.11992/tis.201612014]
 MIAO Duoqian,ZHANG Qinghua,QIAN Yuhua,et al.From human intelligence to machine implementation model: theories and applications based on granular computing[J].CAAI Transactions on Intelligent Systems,2016,11():743.[doi:10.11992/tis.201612014]
[5]汪培庄.因素空间理论——机制主义人工智能理论的数学基础[J].智能系统学报,2018,13(1):37.[doi:10.11992/tis.201711034]
 WANG Peizhuang.Factor space-mathematical basis of mechanism based artificial intelligence theory[J].CAAI Transactions on Intelligent Systems,2018,13():37.[doi:10.11992/tis.201711034]
[6]胡志勇,米据生,冯涛,等.双论域下多粒度模糊粗糙集上下近似的包含关系[J].智能系统学报,2019,14(1):115.[doi:10.11992/tis.201804046]
 HU Zhiyong,MI Jusheng,FENG Tao,et al.Inclusion relation of upper and lower approximations of multigranularity fuzzy rough set in two universes[J].CAAI Transactions on Intelligent Systems,2019,14():115.[doi:10.11992/tis.201804046]
[7]程麟焰,胡峰.基于模糊超网络的知识获取方法研究[J].智能系统学报,2019,14(3):479.[doi:10.11992/tis.201804055]
 CHENG Linyan,HU Feng.Fuzzy hypernetwork-based knowledge acquisition method[J].CAAI Transactions on Intelligent Systems,2019,14():479.[doi:10.11992/tis.201804055]
[8]汪培庄,周红军,何华灿,等.因素表示的信息空间与广义概率逻辑[J].智能系统学报,2019,14(5):843.[doi:10.11992/tis.201810021]
 WANG Peizhuang,ZHOU Hongjun,HE Huacan,et al.Factorial information space and generalized probability logic[J].CAAI Transactions on Intelligent Systems,2019,14():843.[doi:10.11992/tis.201810021]
[9]王洪利.一种参照模糊集的云模型集合论方法研究[J].智能系统学报,2020,15(3):507.[doi:10.11992/tis.201810030]
 WANG Hongli.A method of cloud model set theory referring to fuzzy sets[J].CAAI Transactions on Intelligent Systems,2020,15():507.[doi:10.11992/tis.201810030]
[10]胡星辰,李妍,陈紫健,等.粒度模糊规则建模方法研究综述[J].智能系统学报,2024,19(1):22.[doi:10.11992/tis.202306034]
 HU Xingchen,LI Yan,CHEN Zijian,et al.Review of the research of granular fuzzy rule-based modeling[J].CAAI Transactions on Intelligent Systems,2024,19():22.[doi:10.11992/tis.202306034]

备注/Memo

收稿日期:2021-10-18。
基金项目:国家自然科学基金项目(12171445, 61773019).
作者简介:罗敏霞,教授,博士,中国人工智能学会人工智能基础专业委员会常务委员,中国逻辑学会非经典逻辑与计算专委会委员,国际信息研究学会中国分会泛逻辑与智能信息处理专业委员会副主任,国际信息研究学会中国分会人工智能专业委员会专家委员。主要研究方向为非经典逻辑、近似推理与图像处理;发表学术论文130余篇,出版专著2部,教材1部;徐东辉,助教,主要研究方向为区间值模糊推理
通讯作者:罗敏霞.E-mail:mxluo@cjlu.eud.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com