[1]鹿祥志,孙福振,王绍卿,等.基于用户记忆矩阵的长序列推荐算法[J].智能系统学报,2023,18(3):517-524.[doi:10.11992/tis.202110003]
 LU Xiangzhi,SUN Fuzhen,WANG Shaoqing,et al.Long sequence recommendation algorithm based on user memory matrix[J].CAAI Transactions on Intelligent Systems,2023,18(3):517-524.[doi:10.11992/tis.202110003]
点击复制

基于用户记忆矩阵的长序列推荐算法

参考文献/References:
[1] 何鹏, 吴浩, 曾诚, 等. Truser: 一种基于可信用户的服务推荐方法[J]. 计算机学报, 2019, 42(4): 851–863
HE Peng, WU Hao, ZENG Cheng, et al. Truser: an approach to service recommendation based on trusted users[J]. Chinese journal of computers, 2019, 42(4): 851–863
[2] WANG SHOUJIN, HU LIANG, WANG YAN, et al. Sequential recommender systems: challenges, progress and prospects[EB/OL]. (2019?12?28)[2021?10?05].https://arxiv.org/abs/2001.04830.
[3] WANG SHOUJIN, CAO LONGBING, WANG YAN, et al. A survey on session-based recommender systems[EB/OL]. (2019?02?13)[2021?10?05].https://arxiv.org/abs/1902.04864.
[4] 黄立威, 江碧涛, 吕守业, 等. 基于深度学习的推荐系统研究综述[J]. 计算机学报, 2018, 41(7): 1619–1647
HUANG Liwei, JIANG Bitao, LYU Shouye, et al. Survey on deep learning based recommender systems[J]. Chinese journal of computers, 2018, 41(7): 1619–1647
[5] 吕刚, 张伟. 基于深度学习的推荐系统应用综述[J]. 软件工程, 2020, 23(2): 5–8
LYU Gang, ZHANG Wei. Survey of deep learning applied in recommendation system[J]. Software engineering, 2020, 23(2): 5–8
[6] HIDASI B, KARATZOGLOU A, BALTRUNAS L, et al. Session-based recommendations with recurrent neural networks[EB/OL]. (2015?11?21)[2021?10?05].https://arxiv.org/abs/1511.06939.
[7] 高茂庭, 徐彬源. 基于循环神经网络的推荐算法[J]. 计算机工程, 2019, 45(8): 198–202,209
GAO Maoting, XU Binyuan. Recommendation algorithm based on recurrent neural network[J]. Computer engineering, 2019, 45(8): 198–202,209
[8] QUADRANA M, KARATZOGLOU A, HIDASI B, et al. Personalizing session-based recommendations with hierarchical recurrent neural networks[C]//Proceedings of the Eleventh ACM Conference on Recommender Systems. New York: ACM, 2017: 130–137.
[9] LI Jing, REN Pengjie, CHEN Zhumin, et al. Neural attentive session-based recommendation[C]//Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. New York: ACM, 2017: 1419–1428.
[10] 夏永生, 王晓蕊, 白鹏, 等. 基于时序和距离的门控循环单元兴趣点推荐算法[J]. 计算机工程, 2020, 46(1): 52–59
XIA Yongsheng, WANG Xiaorui, BAI Peng, et al. Point of interest recommendation algorithm of gated recurrent unit based on time series and distance[J]. Computer engineering, 2020, 46(1): 52–59
[11] 牛耀强, 孟昱煜, 牛全福. 基于异质注意力循环神经网络的文本推荐[J]. 计算机工程, 2020, 46(10): 52–59
NIU Yaoqiang, MENG Yuyu, NIU Quanfu. Text recommendation based on heterogeneous attention recurrent neural network[J]. Computer engineering, 2020, 46(10): 52–59
[12] 刘建伟, 王园方, 罗雄麟. 深度记忆网络研究进展[J]. 计算机学报, 2021, 44(8): 1549–1589
LIU Jianwei, WANG Yuanfang, LUO Xionglin. Research and development on deep memory network[J]. Chinese journal of computers, 2021, 44(8): 1549–1589
[13] WESTON J, CHOPRA S, BORDES A. Memory networks[EB/OL]. (2014?10?15)[2021?10?05].https://arxiv.org/abs/1410.3916.
[14] GRAVES A, WAYNE G, DANIHELKA I. Neural Turing machines[EB/OL]. (2014?10?20)[2021?10?05].https://arxiv.org/abs/1410.5401.
[15] SUKHBAATAR S, SZLAM A, WESTON J, et al. End-to-end memory networks[EB/OL]. (2015?03?31)[2021?10?05].https://arxiv.org/abs/1503.08895.
[16] TAN Qiaoyu, ZHANG Jianwei, LIU Ninghao, et al. Dynamic memory based attention network for sequential recommendation[EB/OL]. (2021?02?18)[2021?10?05].https://arxiv.org/abs/2102.09269.
[17] CHEN Xu, XU Hongteng, ZHANG Yongfeng, et al. Sequential recommendation with user memory networks[C]//Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining. Marina Del Rey: ACM, 2018: 108–116.
[18] TAO Ye, WANG Can, YAO Lina, et al. TRec: sequential recommender based on latent item trend information[C]//2020 International Joint Conference on Neural Networks. Glasgow: IEEE, 2020: 1?8.
[19] SUN Yang, YUAN Fajie, YANG Min, et al. A generic network compression framework for sequential recommender systems[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 1299–1308.
[20] JI Wendi, WANG Keqiang, WANG Xiaoling, et al. Sequential recommender via time-aware attentive memory network[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management. Virtual Event Ireland. New York: ACM, 2020: 565–574.
[21] KALATIAN A, FAROOQ B. A context-aware pedestrian trajectory prediction framework for automated vehicles[J]. Transportation research part C:emerging technologies, 2022, 134: 103453.
[22] MA Chen, KANG Peng, LIU Xue. Hierarchical gating networks for sequential recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Anchorage: ACM, 2019: 825–833.
[23] GULLA J A, ZHANG Lemei, LIU Peng, et al. The Adressa dataset for news recommendation[C]//Proceedings of the International Conference on Web Intelligence. New York: ACM, 2017: 1042–1048.
[24] DONG Xinzhou, JIN Beihong, ZHUO Wei, et al. Improving sequential recommendation with attribute-augmented graph neural networks[C]//Pacific-Asia Conference on Knowledge Discovery and Data Mining. Cham: Springer, 2021: 373?385.
[25] LIU Qiao, ZENG Yifu, MOKHOSI R, et al. STAMP: short-term attention/memory priority model for session-based recommendation[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. London: ACM, 2018: 1831?1839.
相似文献/References:
[1]王作为,徐征,张汝波,等.记忆神经网络在机器人导航领域的应用与研究进展[J].智能系统学报,2020,15(5):835.[doi:10.11992/tis.202002020]
 WANG Zuowei,XU Zheng,ZHANG Rubo,et al.Research progress and application of memory neural network in robot navigation[J].CAAI Transactions on Intelligent Systems,2020,15():835.[doi:10.11992/tis.202002020]

备注/Memo

收稿日期:2021-10-05。
基金项目:国家自然科学基金项目(61841602);山东省自然科学基金项目(ZR2020MF147).
作者简介:鹿祥志,硕士研究生,主要研究方向为推荐系统;孙福振,副教授,博士,主要研究方向为数据挖掘、智能信息处理。发表学术论文30余篇;王绍卿,副教授,博士,主要研究方向为推荐系统、数据挖掘
通讯作者:孙福振.E-mail:sunfuzhen@sdut.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com