[1]刘万军,赵思琪,曲海成,等.结合前景特征增强与区域掩码自注意力的细粒度图像分类[J].智能系统学报,2022,17(6):1134-1144.[doi:10.11992/tis.202109029]
 LIU Wanjun,ZHAO Siqi,QU Haicheng,et al.Combining foreground feature reinforcement and region mask self-attention for fine-grained image classification[J].CAAI Transactions on Intelligent Systems,2022,17(6):1134-1144.[doi:10.11992/tis.202109029]
点击复制

结合前景特征增强与区域掩码自注意力的细粒度图像分类

参考文献/References:
[1] ZHANG Fan, LI Meng, ZHAI Guisheng, et al. Multi-branch and multi-scale attention learning for fine-grained visual categorization[M]. MultiMedia Modeling. Cham: Springer International Publishing, 2021: 136-147.
[2] WAH C, BRANSON S, WELINDER P, et al. The Caltech-UCSD Birds-200-2011 Dataset[EB/OL]. (2011-04-12)[2021-09-15]. http://www.vision.caltech.edu/datasets/CUB_200_2011.
[3] MAJI S, RAHTU E, KANNALA J, et al. Fine-grained visual classification of aircraft[EB/OL]. (2013-06-21)[2021-09-15].https://arxiv.org/abs/1306.5151.
[4] ZHANG N, DONAHUE J, GIRSHICK R, et al. Part-based R-CNNs for fine-grained category detection[M]. Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2014: 834-849.
[5] UIJLINGS J R R. VAN DE SANDE K E A, GEVERS T, et al. Selective search for object recognition[J]. International journal of computer vision, 2013, 104(2): 154–171.
[6] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014 : 580-587.
[7] BRANSON S, VAN HORN G, BELONGIE S, et al. Bird species categorization using pose normalized deep convolutional nets[EB/OL]. (2014-06-11)[2021-09-15].https://arxiv.org/abs/1406.2952.
[8] 罗建豪, 吴建鑫. 基于深度卷积特征的细粒度图像分类研究综述[J]. 自动化学报, 2017, 43(8): 1306–1318
LUO Jianhao, WU Jianxin. A survey on fine-grained image categorization using deep convolutional features[J]. Acta automatica sinica, 2017, 43(8): 1306–1318
[9] 陈立潮, 朝昕, 潘理虎, 等. 基于部件关注DenseNet的细粒度车型识别[J]. 智能系统学报, 2022, 17(2): 402–410
CHEN Lichao, CHAO Xin, PAN Lihu, et al. Fine-grained vehicle type identification based on part-focused DenseNet[J]. CAAI transactions on intelligent systems, 2022, 17(2): 402–410
[10] LIN T Y, ROYCHOWDHURY A, MAJI S. Bilinear CNN models for fine-grained visual recognition[C]//2015 IEEE International Conference on Computer Vision (ICCV). Santiago: IEEE, 2015: 1449-1457.
[11] FU Jianlong, ZHENG Heliang, MEI Tao. Look closer to see better: recurrent attention convolutional neural network for fine-grained image recognition[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017 : 4476-4484.
[12] ZHENG Heliang, FU Jianlong, MEI Tao, et al. Learning multi-attention convolutional neural network for fine-grained image recognition[C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 5219-5227.
[13] ZHOU Bolei, KHOSLA A, LAPEDRIZA A, et al. Learning deep features for discriminative localization[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016 : 2921-2929.
[14] WEI Jun, WANG Qin, LI Zhen, et al. Shallow feature matters for weakly supervised object localization[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville: IEEE, 2021 : 5989-5997.
[15] SOHN J, JEON E, JUNG W, et al. Fine-grained attention for weakly supervised object localization[EB/OL]. (2021-04-11)[2021-09-15].https://arxiv.org/abs/2104.04952.
[16] PAN Xingjia, GAO Yingguo, LIN Zhiwen, et al. Unveiling the potential of structure preserving for weakly supervised object localization[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville: IEEE, 2021: 11637-11646.
[17] ZHANG Xiaolin, WEI Yunchao, FENG Jiashi, et al. Adversarial complementary learning for weakly supervised object localization[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 1325-1334.
[18] WEI Xiushen, LUO Jianhao, WU Jianxin, et al. Selective convolutional descriptor aggregation for fine-grained image retrieval[J]. IEEE transactions on image processing, 2017, 26(6): 2868–2881.
[19] QIAO Liang, CHEN Ying, CHENG Zhanzhan, et al. MANGO: a mask attention guided one-stage scene text spotter[J]. Proceedings of the AAAI conference on artificial intelligence, 2021, 35(3): 2467–2476.
[20] WANG Jun, YU Xiaohan, GAO Yongsheng. Mask guided attention for fine-grained patchy image classification[C]//2021 IEEE International Conference on Image Processing. Anchorage: IEEE, 2021 : 1044-1048.
[21] SUN GUOLEI, CHOLAKKAL H, KHAN S, et al. Fine-grained recognition: accounting for subtle differences between similar classes[J]. Proceedings of the AAAI conference on artificial intelligence, 2020, 34(07): 12047–12054.
[22] LI J L, DAI H, SHAO L, et al. Anchor-free 3D Single Stage Detector with Mask-Guided Attention for Point Cloud[M]. New York, NY, USA: Association for Computing Machinery, 2021: 553-562.
[23] XIE Jin, PANG Yanwei, KHAN M H, et al. Mask-guided attention network and occlusion-sensitive hard example mining for occluded pedestrian detection[J]. IEEE transactions on image processing:a publication of the IEEE signal processing society, 2021, 30: 3872–3884.
[24] CHOE J, LEE S, SHIM H. Attention-based dropout layer for weakly supervised single object localization and semantic segmentation[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 2214-2223.
[25] KRAUSE J, STARK M, JIA Deng, et al. 3D object representations for fine-grained categorization[C]//2013 IEEE International Conference on Computer Vision Workshops. Sydney: IEEE, 2013: 554-561.
[26] TAN Min, WANG Guijun, ZHOU Jian, et al. Fine-grained classification via hierarchical bilinear pooling with aggregated slack mask[J]. IEEE access, 2019, 7: 117944–117953.
[27] WEI Xiu Sen, WU Jian Xin, CUI Quan. Deep Learning for Fine-Grained Image Analysis: A Survey[EB/OL]. (2019-07-06)[2021-09-15].https://arxiv.org/abs/1907.03069.
[28] LUO Wei, YANG Xitong, MO Xianjie, et al. Cross-X learning for fine-grained visual categorization[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul: IEEE, 2019: 8241-8250.
[29] CHEN Yue, BAI Yalong, ZHANG Wei, et al. Destruction and construction learning for fine-grained image recognition[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 5152-5161.
[30] HANSELMANN H, NEY H. ELoPE: fine-grained visual classification with efficient localization, pooling and embedding[C]//2020 IEEE Winter Conference on Applications of Computer Vision. Snowmass: IEEE, 2020: 1236-1245.
[31] LI Ming, LEI Lin, SUN Hao, et al. Fine-grained visual classification via multilayer bilinear pooling with object localization[J]. The visual computer, 2022, 38(3): 811–820.
[32] YANG Ze, LUO Tiange, WANG Dong, et al. Learning to Navigate for Fine-Grained Classification[C]//European Conference on Computer Vision. Cham: Springer, 2018: 438-454.
[33] SHI Xiruo, XU Liutong, WANG Pengfei, et al. Beyond the attention: distinguish the discriminative and confusable features for fine-grained image classification[C]//MM ’20: Proceedings of the 28th ACM International Conference on Multimedia. New York: ACM, 2020: 601-609.
相似文献/References:
[1]修春波,李欣,巴富珊.模糊直方图模型的运动目标跟踪[J].智能系统学报,2019,14(5):939.[doi:10.11992/tis.201807033]
 XIU Chunbo,LI Xin,BA Fushan.Target tracking based on the fuzzy histogram model[J].CAAI Transactions on Intelligent Systems,2019,14():939.[doi:10.11992/tis.201807033]
[2]齐小刚,张海洋,魏倩.一种非视距环境下的目标定位算法[J].智能系统学报,2021,16(1):75.[doi:10.11992/tis.201912012]
 QI Xiaogang,ZHANG Haiyang,WEI Qian.A target localization algorithm in NLOS environments[J].CAAI Transactions on Intelligent Systems,2021,16():75.[doi:10.11992/tis.201912012]
[3]宋思雨,苗夺谦.基于多粒度空间混乱的细粒度图像分类算法[J].智能系统学报,2022,17(1):144.[doi:10.11992/tis.202105040]
 SONG Siyu,MIAO Duoqian.Fine-grained image classification algorithm based on multi-granularity regions shuffle[J].CAAI Transactions on Intelligent Systems,2022,17():144.[doi:10.11992/tis.202105040]

备注/Memo

收稿日期:2021-09-15。
基金项目:国家自然科学基金面上基金项目(42071351);辽宁省教育厅基础研究项目(LJ2019JL010).
作者简介:刘万军,教授,博士生导师,主要研究方向为图像与智能信息处理。主持国家自然科学基金面上项目等各类科研项目20余项。发表学术论文200余篇;赵思琪,硕士研究生,主要研究方向为图像与智能信息处理;曲海成,副教授,博士,主要研究方向为图像与智能信息处理。主持省自然科学基金1项、省教育厅面上项目2项。发表学术论文60余篇
通讯作者:刘万军.E-mail:liuwanjun@lntu.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com