[1]蒲兴成,宋欣琳.分组教学蚁群算法改进及其在机器人路径规划中应用[J].智能系统学报,2022,17(4):764-771.[doi:10.11992/tis.202108020]
 PU Xingcheng,SONG Xinlin.Improvement of ant colony algorithm in group teaching and its application in robot path planning[J].CAAI Transactions on Intelligent Systems,2022,17(4):764-771.[doi:10.11992/tis.202108020]
点击复制

分组教学蚁群算法改进及其在机器人路径规划中应用

参考文献/References:
[1] WANG Jiaying, LUO Bing, ZENG Ming, et al. A wind estimation method with an unmanned rotorcraft for environmental monitoring tasks[J]. Sensors (Basel, Switzerland), 2018, 18(12): 4504.
[2] ZHANG Mingyi, LIU Xilong, XU De, et al. Vision-based target-following guider for mobile robot[J]. IEEE transactions on industrial electronics, 2019, 66(12): 9360–9371.
[3] GAO Yingding, HU Tianyang, WANG Yinchu, et al. Research on the path planning algorithm of mobile robot[C]//2021 13th International Conference on Measuring Technology and Mechatronics Automation. Beihai: IEEE, 2021: 447?450.
[4] ALI M A H, MAILAH M. Path planning and control of mobile robot in road environments using sensor fusion and active force control[J]. IEEE transactions on vehicular technology, 2019, 68(3): 2176–2195.
[5] DIJKSTRA E W. A note on two problems in connexion with graphs[J]. Numerische mathematik, 1959, 1(1): 269–271.
[6] GOLDBERG A V, KAPLAN H, WERNECK R F. Reach for A*: efficient point-to-point shortest path algorithms[C]//Proceedings of the Eighth Workshop on Algorithm Engineering and Experiments. Florida: Society for Industrial and Applied Mathematics, 2006, 6(2): 129?143.
[7] 楼传炜, 葛泉波, 刘华平, 等. 无人机群目标搜索的主动感知方法[J]. 智能系统学报, 2021, 16(3): 575–583
LOU Chuanwei, GE Quanbo, LIU Huaping, et al. Active perception method for UAV group target search[J]. CAAI transactions on intelligent systems, 2021, 16(3): 575–583
[8] 徐玉琼, 娄柯, 李志锟. 基于变步长蚁群算法的移动机器人路径规划[J]. 智能系统学报, 2021, 16(2): 330–337
XU Yuqiong, LOU Ke, LI Zhikun. Mobile robot path planning based on variable-step ant colony algorithm[J]. CAAI transactions on intelligent systems, 2021, 16(2): 330–337
[9] 夏小云, 周育人. 蚁群优化算法的理论研究进展[J]. 智能系统学报, 2016, 11(1): 27–36
XIA Xiaoyun, ZHOU Yuren. Advances in theoretical research of ant colony optimization[J]. CAAI transactions on intelligent systems, 2016, 11(1): 27–36
[10] GAO Wei. Modified ant colony optimization with improved tour construction and pheromone updating strategies for traveling salesman problem[J]. Soft computing, 2021, 25(4): 3263–3289.
[11] LIN Wang. Path planning for unmanned wheeled robot based on improved ant colony optimization[J]. Measurement and control, 2020, 53(5/6): 1014–1021.
[12] LI Xue, WANG Lei. Application of improved ant colony optimization in mobile robot trajectory planning[J]. Mathematical biosciences and engineering:MBE, 2020, 17(6): 6756–6774.
[13] PU Xingcheng, XIONG Chaowen, JI Lianghao, et al. 3D path planning for a robot based on improved ant colony algorithm[J]. Evolutionary intelligence, 2020: 1–11.
[14] 梁凯, 毛剑琳. 基于改进蚁群算法的室内移动机器人路径规划[J]. 电子测量技术, 2019, 42(11): 65–69
LIANG Kai, MAO Jianlin. Path planning of indoor mobile robot based on improved ant colony algorithm[J]. Electronic measurement technology, 2019, 42(11): 65–69
[15] QIN Ling, PAN Yi, CHEN Ling, et al. An improved ant colony algorithm with diversified solutions based on the immune strategy[J]. BMC bioinformatics, 2006, 7(4): 1–8.
[16] YU Miao. A solution of TSP based on the ant colony algorithm improved by particle swarm optimization[J]. Discrete & continuous dynamical systems-S, 2019, 12(4/5): 979–987.
[17] DAI Xiaolin, LONG Shuai, ZHANG Zhiwen, et al. Mobile robot path planning based on ant colony algorithm with A* heuristic method[J]. Frontiers in neurorobotics, 2019, 13: 15.
[18] ZHU Shinan, ZHU Weiyi, ZHANG Xueqin, et al. Path planning of lunar robot based on dynamic adaptive ant colony algorithm and obstacle avoidance[J]. International journal of advanced robotic systems, 2020, 17(3): 1–14.
[19] WU Hongguang, GAO Yuelin, WANG Wanting, et al. A hybrid ant colony algorithm based on multiple strategies for the vehicle routing problem with time windows[J]. Complex & intelligent systems, 2021: 1–18.
[20] TAO Yong, GAO He, REN Fan, et al. A mobile service robot global path planning method based on ant colony optimization and fuzzy control[J]. Applied sciences, 2021, 11(8): 3605.
[21] ZHANG Yiying, JIN Zhigang. Group teaching optimization algorithm: a novel metaheuristic method for solving global optimization problems[J]. Expert systems with applications, 2020, 148: 113246.
[22] DORIGO M, MANIEZZO V, COLORNI A. The ant system: an autocatalytic optimizing process[R]. Milan: Dipartimento di Elettronica, Politecnicl di Milano, 1991.
[23] DORIGO M, MANIEZZO V, COLORNI A. Ant system: optimization by a colony of cooperating agents[J].IEEE transactions on systems, man, and cybernetics, part B. 1996, 26(1): 29?41.
[24] 任红格, 胡鸿长, 史涛. 基于改进蚁群算法的移动机器人全局路径规划[J]. 华北理工大学学报(自然科学版), 2021, 43(2): 102–109
REN Hongge, HU Hongchang, SHI Tao. Global path planning of mobile robots based on improved ant colony algorithm[J]. Journal of North China University of Science and Technology (natural science edition), 2021, 43(2): 102–109
[25] PU Xingcheng, XIONG Chaowen, ZHAO Longlong. Path planning for robot based on IACO-SFLA hybrid algorithm[C]//Proceedings of 2020 Chinese Control and Decision Conference. Hefei: IEEE, 2020: 652?629.
相似文献/References:
[1]裴振兵,陈雪波.改进蚁群算法及其在机器人避障中的应用[J].智能系统学报,2015,10(1):90.[doi:10.3969/j.issn.1673-4785.201311018]
 PEI Zhenbing,CHEN Xuebo.Improved ant colony algorithm and its application in obstacle avoidance for robot[J].CAAI Transactions on Intelligent Systems,2015,10():90.[doi:10.3969/j.issn.1673-4785.201311018]
[2]蒲兴成,冼文杰,聂壮.基于改进蚁群优化算法的AUV三维路径规划[J].智能系统学报,2024,19(3):627.[doi:10.11992/tis.202211038]
 PU Xingcheng,XIAN Wenjie,NIE Zhuang.Three-dimensional path planning of AUV based on improved ant colony optimization algorithm[J].CAAI Transactions on Intelligent Systems,2024,19():627.[doi:10.11992/tis.202211038]

备注/Memo

收稿日期:2021-08-17。
基金项目:国家自然科学基金项目(61876200);重庆市科委项目(cstc2018jcyjyAX0112);重庆市教委科研项目(J2014032)
作者简介:蒲兴成,教授,博士,博士生导师,主要研究方向为多智能体系统、群智能算法和随机系统。主持和参与市级以上科研项目10余项。发表学术论文50余篇,出版学术专著和教材各2部;宋欣琳,硕士研究生,主要研究方向为群智能算法的改进及应用
通讯作者:蒲兴成. E-mail: puxc@cqupt.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com