[1]邓欣,肖立峰,杨鹏飞,等.融合运动想象脑电与眼电信号的机械臂控制系统开发[J].智能系统学报,2022,17(6):1163-1172.[doi:10.11992/tis.202107042]
 DENG Xin,XIAO Lifeng,YANG Pengfei,et al.Development of a robot arm control system using motor imagery electroencephalography and electrooculography[J].CAAI Transactions on Intelligent Systems,2022,17(6):1163-1172.[doi:10.11992/tis.202107042]
点击复制

融合运动想象脑电与眼电信号的机械臂控制系统开发

参考文献/References:
[1] 尹锐, 曹勇, 姜劲, 等. 基于运动想象脑机接口的外骨骼控制系统研究[J]. 航天医学与医学工程, 2020, 33(3): 208–213
YIN Rui, CAO Yong, JIANG Jin, et al. Design and implementation of exoskeleton control system based on motor imagery brain computer interface[J]. Space medicine & medical engineering, 2020, 33(3): 208–213
[2] 王斐, 张育中, 宁廷会, 等. 脑–机接口研究进展[J]. 智能系统学报, 2011, 6(3): 189–199
WANG Fei, ZHANG Yuzhong, NING Tinghui, et al. Research progress in a brain-computer interface[J]. CAAI transactions on intelligent systems, 2011, 6(3): 189–199
[3] ZHANG Wenchang, SUN Fuchun, WU Hang, et al. Asynchronous brain-computer interface shared control of robotic grasping[J]. Tsinghua science and technology, 2019, 24(3): 360–370.
[4] ZHU Yuanlu, LI Ying, LU Jinling, et al. A hybrid BCI based on SSVEP and EOG for robotic arm control[J]. Frontiers in neurorobotics, 2020, 14: 583641.
[5] 徐宝国, 何小杭, 魏智唯, 等. 基于运动想象脑电的机器人连续控制系统研究[J]. 仪器仪表学报, 2018, 39(9): 10–19
XU Baoguo, HE Xiaohang, WEI Zhiwei, et al. Research on continuous control system for robot based on motor imagery EEG[J]. Chinese journal of scientific instrument, 2018, 39(9): 10–19
[6] JEONG J H, SHIM K H, KIM D J, et al. Brain-controlled robotic arm system based on multi-directional CNN-BiLSTM network using EEG signals[J]. IEEE transactions on neural systems and rehabilitation engineering, 2020, 28(5): 1226–1238.
[7] LI Ting, HONG Jun, ZHANG Jinhua, et al. Brain-machine interface control of a manipulator using small-world neural network and shared control strategy[J]. Journal of neuroscience methods, 2014, 224: 26–38.
[8] RAKSHIT A, KONAR A, NAGAR A K. A hybrid brain-computer interface for closed-loop position control of a robot arm[J]. IEEE/CAA journal of automatica sinica, 2020, 7(5): 1344–1360.
[9] GAO Qiang, DOU Lixiang, BELKACEM A N, et al. Noninvasive electroencephalogram based control of a robotic arm for writing task using hybrid BCI system[J]. BioMed research international, 2017, 2017: 8316485.
[10] BHATTACHARYYA S, KONAR A, TIBAREWALA D N. Motor imagery, P300 and error-related EEG-based robot arm movement control for rehabilitation purpose[J]. Medical & biological engineering & computing, 2014, 52(12): 1007–1017.
[11] 李丹妮. 基于运动想象脑电信号的特征提取和分类算法研究[D]. 重庆: 重庆邮电大学, 2019.
LI Danni. Research on feature extraction and classification algorithm of EEG based on motor imagery[D]. Chongqing: Chongqing University of Posts and Telecommunications, 2019.
[12] 张晓楠, 刘建平. Graz-脑机接口研究概述[J]. 智能系统学报, 2013, 8(5): 395–399
ZHANG Xiaonan, LIU Jianping. Summary on the research for Graz-brain-computer interface[J]. CAAI transactions on intelligent systems, 2013, 8(5): 395–399
[13] BAI Xiaoping, WANG Xiangzhou, ZHENG Shuhua, et al. The offline feature extraction of four-class motor imagery EEG based on ICA and Wavelet-CSP[C]//Proceedings of the 33rd Chinese Control Conference. Nanjing: IEEE, 2014: 7189-7194.
[14] 邓欣, 龙灿, 米建勋, 等. 基于多域特征与随机子空间集成的脑电分类[J]. 系统仿真学报, 2020, 32(9): 1787–1798
DENG Xin, LONG Can, MI Jianxun, et al. EEG classification based on multi-domain features and random subspace ensemble[J]. Journal of system simulation, 2020, 32(9): 1787–1798
[15] 刘柯, 张孝, 李沛洋, 等. 基于脑功能网络和共空间模式分析的脑电情绪识别[J]. 计算机应用研究, 2021, 38(5): 1344–1349
LIU Ke, ZHANG Xiao, LI Peiyang, et al. EEG emotion recognition based on common spatial pattern of brain functional network[J]. Application research of computers, 2021, 38(5): 1344–1349
[16] YIN Xu, MENG Ming, SHE Qingshan, et al. Optimal channel-based sparse time-frequency blocks common spatial pattern feature extraction method for motor imagery classification[J]. Mathematical biosciences and engineering:MBE, 2021, 18(4): 4247–4263.
[17] SWELDENS W. The lifting scheme: a custom-design construction of biorthogonal wavelets[J]. Applied and computational harmonic analysis, 1996, 3(2): 186–200.
[18] 罗志增, 鲁先举, 周莹. 基于脑功能网络和样本熵的脑电信号特征提取[J]. 电子与信息学报, 2021, 43(2): 412–418
LUO Zhizeng, LU Xianju, ZHOU Ying. EEG feature extraction based on brain function network and sample entropy[J]. Journal of electronics & information technology, 2021, 43(2): 412–418
[19] 杨建平, 刘明华, 吕敬祥, 等. 低觉醒脑电识别与唤醒的可穿戴系统研究[J]. 智能系统学报, 2019, 14(4): 787–792
YANG Jianping, LIU Minghua, LYU Jingxiang, et al. A wearable system to recognize and awaken low-arousal state[J]. CAAI transactions on intelligent systems, 2019, 14(4): 787–792
[20] 伍广腾. 基于运动想象的脑—机接口在线异步系统研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
WU Guangteng. Research on online asynchronous brain-computer interface system based on motor imagery[D]. Harbin: Harbin Institute of Technology, 2018.
[21] 孟建军, 盛鑫军, 姚林, 等. 基于共空域频谱模式的少通道运动想象分类[J]. 中国生物医学工程学报, 2013, 32(5): 553–561
MENG Jianjun, SHENG Xinjun, YAO Lin, et al. Common spatial spectral pattern for motor imagery tasks in small channel configuration[J]. Chinese journal of biomedical engineering, 2013, 32(5): 553–561
[22] BHATTACHARYYA S, KONAR A, TIBAREWALA D N. Motor imagery and error related potential induced position control of a robotic arm[J]. IEEE/CAA journal of automatica sinica, 2017, 4(4): 639–650.
[23] DENG Xin, ZHANG Boxian, YU Nian, et al. Advanced TSGL-EEGNet for motor imagery EEG-based brain-computer interfaces[J]. IEEE access, 2021, 9: 25118–25130.
[24] LI Ninghan, LIU Yongze. Multi-domain feature extraction method of motor imagery EEG signal based on DWT and CSP[C]//Thirteenth international conference on signal processing systems (ICSPS 2021).Shanghai: SPIE, 2022: 286-291.
[25] 周鹏. 基于运动想象的脑机接口的研究[D]. 天津: 天津大学, 2007.
ZHOU Peng. The research of brain-computer interface based on motor imagery[D]. Tianjin: Tianjin University, 2007.
相似文献/References:
[1]张晓楠,刘建平.Graz- 脑机接口研究概述[J].智能系统学报,2013,8(5):395.[doi:10.3969/j.issn.1673-4785.201304055]
 ZHANG Xiaonan,LIU Jianping.Summary on the research for Graz-brain-computer interface[J].CAAI Transactions on Intelligent Systems,2013,8():395.[doi:10.3969/j.issn.1673-4785.201304055]
[2]程煜,张鸣宇,陶霖密.1-Bit人机交互系统[J].智能系统学报,2015,10(4):528.[doi:10.3969/j.issn.1673-4785.201501015]
 CHENG Yu,ZHANG Mingyu,TAO Linmi.One-Bit human-computer interactive system[J].CAAI Transactions on Intelligent Systems,2015,10():528.[doi:10.3969/j.issn.1673-4785.201501015]
[3]李景聪,潘伟健,林镇远,等.采用多路图注意力网络的情绪脑电信号识别方法[J].智能系统学报,2022,17(3):531.[doi:10.11992/tis.202107003]
 LI Jingcong,PAN Weijian,LIN Zhenyuan,et al.Emotional EEG signal recognition method using multi-path graph attention network[J].CAAI Transactions on Intelligent Systems,2022,17():531.[doi:10.11992/tis.202107003]
[4]蒋云良,周阳,张雄涛,等.基于域间Mixup微调策略的跨被试运动想象脑电信号分类算法[J].智能系统学报,2024,19(4):909.[doi:10.11992/tis.202208017]
 JIANG Yunliang,ZHOU Yang,ZHANG Xiongtao,et al.Cross-subject motor imagery EEG classification based on inter-domain Mixup fine-tuning strategy[J].CAAI Transactions on Intelligent Systems,2024,19():909.[doi:10.11992/tis.202208017]

备注/Memo

收稿日期:2021-07-20。
基金项目:国家自然科学基金项目(61806033,61703065);重庆市自然科学基金面上项目(cstc2020jcyj-msxmX0284);重庆市教委科技项目(KJQN202000625).
作者简介:邓欣,副教授,主要研究方向为脑机接口、大数据分析。主持和主要参与国家和省部级科研项目10项。发表学术论文70篇;肖立峰,硕士研究生,主要研究方向为智能信息处理;杨鹏飞,硕士研究生,主要研究方向为智能信息处理
通讯作者:邓欣.E-mail:dengxin@cqupt.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com