[1]张鹏鹏,魏长赟,张恺睿,等.旋翼无人机在移动平台降落的控制参数自学习调节方法[J].智能系统学报,2022,17(5):931-940.[doi:10.11992/tis.202107040]
 ZHANG Pengpeng,WEI Changyun,ZHANG Kairui,et al.Self-learning approach to control parameter adjustment for quadcopter landing on a moving platform[J].CAAI Transactions on Intelligent Systems,2022,17(5):931-940.[doi:10.11992/tis.202107040]
点击复制

旋翼无人机在移动平台降落的控制参数自学习调节方法

参考文献/References:
[1] LIU P, CHEN A Y, HUANG Yinnan, et al. A review of rotorcraft Unmanned Aerial Vehicle (UAV) developments and applications in civil engineering[J]. Smart structures and systems, 2014, 13(6): 1065–1094.
[2] TSOUROS D, BIBI S, SARIGIANNIDIS P. A review on UAV-based applications for precision agriculture[J]. Information (Switzerland), 2019, 10(11): 349.
[3] REN H, ZHAO Y, XIAO W, et al. A review of UAV monitoring in mining areas: current status and future perspectives[J]. International journal of coal science & technology, 2019, 6(3): 320–333.
[4] MICHAEL N, SHEN Shaojie, MOHTA K, et al. Collaborative mapping of an earthquake-damaged building via ground and aerial robots[J]. Journal of field robotics, 2012, 29(5): 832–841.
[5] 王华鲜, 华容, 刘华平, 等. 无人机群多目标协同主动感知的自组织映射方法[J]. 智能系统学报, 2020, 15(3): 609?614.
WANG Huaxian, HUA Rong, LIU Huaping, et al. Self-organizing feature map method for multi-target active perception of unmanned aerial vehicle systems[J]. CAAI transactions on intelligent systems, 2020, 15(3): 609?614.
[6] BACA T, STEPAN P, SPURNY V, et al. Autonomous landing on a moving vehicle with an unmanned aerial vehicle[J]. Journal of field robotics, 2019, 36(5): 874–891.
[7] TALHA M, ASGHAR F, ROHAN A, et al. Fuzzy logic-based robust and autonomous safe landing for UAV quadcopter[J]. Arabian journal for science and engineering, 2019, 44(3): 2627–2639.
[8] FENG Yi, ZHANG Cong, BAEK S, et al. Autonomous landing of a UAV on a moving platform using model predictive control[J]. Drones, 2018, 2(4): 34.
[9] RODRIGUEZ-RAMOS A, SAMPEDRO C, BAVLE H, et al. A deep reinforcement learning technique for vision-based autonomous multirotor landing on a moving platform[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid, IEEE, 2018: 1010?1017.
[10] SHAKER M, SMITH M N R, YUE Shigang, et al. Vision-based landing of a simulated unmanned aerial vehicle with fast reinforcement learning[C]//2010 International Conference on Emerging Security Technologies. Canterbury, IEEE, 2010: 183?188.
[11] RODRIGUEZ-RAMOS A, SAMPEDRO C, BAVLE H, et al. A deep reinforcement learning strategy for UAV autonomous landing on a moving platform[J]. Journal of intelligent & robotic systems, 2019, 93(1/2): 351–366.
[12] LEE S, SHIM T, KIM S, et al. Vision-based autonomous landing of a multi-copter unmanned aerial vehicle using reinforcement learning[C]//2018 International Conference on Unmanned Aircraft Systems (ICUAS). Dallas, IEEE, 2018: 108?114.
[13] ARULKUMARAN K, DEISENROTH M, BRUNDAGE M, et al. Deep reinforcement learning: a brief survey[J]. IEEE signal processing magazine, 2017, 34: 26–38.
[14] HESSEL M, SOYER H, ESPEHOLT L, et al. Multi-task deep reinforcement learning with PopArt[J]. Proceedings of the AAAI conference on artificial intelligence, 2019, 33: 3796–3803.
[15] SEDIGHIZADEH M, REZAZADEH A. Adaptive PID controller based on reinforcement learning for wind turbine control[J]. World academy of science, engineering and technology, international journal of computer, electrical, automation, control and information engineering, 2008, 2: 124–129.
[16] WANG Shuti, YIN Xunhe, LI Peng, et al. Trajectory tracking control for mobile robots using reinforcement learning and PID[J]. Iranian journal of science and technology, transactions of electrical engineering, 2020, 44(3): 1059–1068.
[17] ASADI K, KALKUNTE SURESH A, ENDER A, et al. An integrated UGV-UAV system for construction site data collection[J]. Automation in construction, 2020, 112: 103068.
[18] ERGINER B, ALTUG E. Modeling and PD control of a quadrotor VTOL vehicle[C]//2007 IEEE Intelligent Vehicles Symposium. Istanbul, IEEE, 2007: 894?899.
[19] LILLICRAP T P, HUNT J J, PRITZEL A, et al. Continuous control with deep reinforcement learning[EB/OL]. (2015?01?01)[2021?01?01]. https: //arxiv. org/abs/1509.02971.
[20] CARLUCHO I, DE PAULA M, VILLAR S A, et al. Incremental Q-learning strategy for adaptive PID control of mobile robots[J]. Expert systems with applications, 2017, 80: 183–199.
[21] CHOI J, CHEON D, LEE J. Robust landing control of a quadcopter on a slanted surface[J]. International journal of precision engineering and manufacturing, 2021, 22(6): 1147–1156.
[22] KIM J, JUNG Y, LEE D, et al. Landing control on a mobile platform for multi-copters using an omnidirectional image sensor[J]. Journal of intelligent & robotic systems, 2016, 84(1/2/3/4): 529–541.
[23] CELEMIN C, RUIZ-DEL-SOLAR J. An interactive framework for learning continuous actions policies based on corrective feedback[J]. Journal of intelligent & robotic systems, 2019, 95(1): 77–97.
[24] SILVER D, HUANG A, MADDISON C J, et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016, 529(7587): 484?489.
[25] GRIGORESCU S, TRASNEA B, COCIAS T, et al. A survey of deep learning techniques for autonomous driving[J]. Journal of field robotics, 2020, 37(3): 362?386.
[26] HESSEL M, MODAYIL J, VAN HASSELT H, et al. Rainbow: combining improvements in deep reinforcement learning[EB/OL].(2017?01?01)[2021?01?01]. https: //arxiv. org/abs/1710.02298.
[27] SUTTON R S, BARTO A G. Reinforcement learning: an introduction[M]. Cambridge, Mass: MIT Press, 1998.
[28] WATKINS C J C H, DAYAN P. Q-learning[J]. Machine learning, 1992, 8(3/4): 279–292.
[29] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529?533.
[30] VAN HASSELT H, GUEZ A, SILVER D. Deep reinforcement learning with double Q-learning[EB/OL]. (2015?05?01)[2020?12?20].https://arxiv. org/abs/1509.06461v3.
[31] WANG Z, SCHAUL T, HESSEL M, et al. Dueling network architectures for deep reinforcement learning[C]// International conference on machine learning. PMLR, 2016: 1995?2003.
[32] KOUBAA A. Robot operating system (ROS): The complete reference[M]. volume 1. Cham: Springer, 2016.
相似文献/References:
[1]连传强,徐昕,吴军,等.面向资源分配问题的Q-CF多智能体强化学习[J].智能系统学报,2011,6(2):95.
 LIAN Chuanqiang,XU Xin,WU Jun,et al.Q-CF multiAgent reinforcement learningfor resource allocation problems[J].CAAI Transactions on Intelligent Systems,2011,6():95.
[2]梁爽,曹其新,王雯珊,等.基于强化学习的多定位组件自动选择方法[J].智能系统学报,2016,11(2):149.[doi:10.11992/tis.201510031]
 LIANG Shuang,CAO Qixin,WANG Wenshan,et al.An automatic switching method for multiple location components based on reinforcement learning[J].CAAI Transactions on Intelligent Systems,2016,11():149.[doi:10.11992/tis.201510031]
[3]张文旭,马磊,王晓东.基于事件驱动的多智能体强化学习研究[J].智能系统学报,2017,12(1):82.[doi:10.11992/tis.201604008]
 ZHANG Wenxu,MA Lei,WANG Xiaodong.Reinforcement learning for event-triggered multi-agent systems[J].CAAI Transactions on Intelligent Systems,2017,12():82.[doi:10.11992/tis.201604008]
[4]周文吉,俞扬.分层强化学习综述[J].智能系统学报,2017,12(5):590.[doi:10.11992/tis.201706031]
 ZHOU Wenji,YU Yang.Summarize of hierarchical reinforcement learning[J].CAAI Transactions on Intelligent Systems,2017,12():590.[doi:10.11992/tis.201706031]
[5]张文旭,马磊,贺荟霖,等.强化学习的地-空异构多智能体协作覆盖研究[J].智能系统学报,2018,13(2):202.[doi:10.11992/tis.201609017]
 ZHANG Wenxu,MA Lei,HE Huilin,et al.Air-ground heterogeneous coordination for multi-agent coverage based on reinforced learning[J].CAAI Transactions on Intelligent Systems,2018,13():202.[doi:10.11992/tis.201609017]
[6]徐鹏,谢广明,文家燕,等.事件驱动的强化学习多智能体编队控制[J].智能系统学报,2019,14(1):93.[doi:10.11992/tis.201807010]
 XU Peng,XIE Guangming,WEN Jiayan,et al.Event-triggered reinforcement learning formation control for multi-agent[J].CAAI Transactions on Intelligent Systems,2019,14():93.[doi:10.11992/tis.201807010]
[7]郭宪,方勇纯.仿生机器人运动步态控制:强化学习方法综述[J].智能系统学报,2020,15(1):152.[doi:10.11992/tis.201907052]
 GUO Xian,FANG Yongchun.Locomotion gait control for bionic robots: a review of reinforcement learning methods[J].CAAI Transactions on Intelligent Systems,2020,15():152.[doi:10.11992/tis.201907052]
[8]申翔翔,侯新文,尹传环.深度强化学习中状态注意力机制的研究[J].智能系统学报,2020,15(2):317.[doi:10.11992/tis.201809033]
 SHEN Xiangxiang,HOU Xinwen,YIN Chuanhuan.State attention in deep reinforcement learning[J].CAAI Transactions on Intelligent Systems,2020,15():317.[doi:10.11992/tis.201809033]
[9]殷昌盛,杨若鹏,朱巍,等.多智能体分层强化学习综述[J].智能系统学报,2020,15(4):646.[doi:10.11992/tis.201909027]
 YIN Changsheng,YANG Ruopeng,ZHU Wei,et al.A survey on multi-agent hierarchical reinforcement learning[J].CAAI Transactions on Intelligent Systems,2020,15():646.[doi:10.11992/tis.201909027]
[10]莫宏伟,田朋.基于注意力融合的图像描述生成方法[J].智能系统学报,2020,15(4):740.[doi:10.11992/tis.201910039]
 MO Hongwei,TIAN Peng.An image caption generation method based on attention fusion[J].CAAI Transactions on Intelligent Systems,2020,15():740.[doi:10.11992/tis.201910039]

备注/Memo

收稿日期:2021-07-20。
基金项目:国家自然科学基金项目(61703138);中央高校基本科研业务费项目(B200202224).
作者简介:张鹏鹏,硕士研究生,主要研究方向为空地协同系统、智能无人系统;魏长赟,副教授,博士,博士毕业于荷兰代尔夫特理工大学人工智能专业,英国卡迪夫大学机器人及自主系统实验室访问学者,主要研究方向是自主智能无人系统。以第一作者发表学术论文20余篇,出版英文专著1本;张恺睿,本科,主要研究方向为智能无人系统。
通讯作者:魏长赟. E-mail:c.wei@hhu.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com