[1]杨伟凯,王艳.知识推理框架下的改进自组织映射方法设计[J].智能系统学报,2023,18(5):926-935.[doi:10.11992/tis.202107013]
 YANG Weikai,WANG Yan.A design of an improved self-organizing mapping method based on a knowledge reasoning framework[J].CAAI Transactions on Intelligent Systems,2023,18(5):926-935.[doi:10.11992/tis.202107013]
点击复制

知识推理框架下的改进自组织映射方法设计

参考文献/References:
[1] JIA Yanjie, CHEN Xi, YU Jieqiong, et al. Speaker recognition based on characteristic spectrograms and an improved self-organizing feature map neural network[J]. Complex & intelligent systems, 2021, 7(4): 1749-1757.
[2] QIU Dongwei, XU Hao, LUO Dean, et al. A rainwater control optimization design approach for airports based on a self-organizing feature map neural network model[J]. PLoS one, 2020, 15(1): e0227901.
[3] NG R W, BEGAM K M, RAJKUMAR R K, et al. An improved self-organizing incremental neural network model for short-term time-series load prediction[J]. Applied energy, 2021, 292: 116912.
[4] 王华鲜, 华容, 刘华平, 等. 无人机群多目标协同主动感知的自组织映射方法[J]. 智能系统学报, 2020, 15(3): 609-614
WANG Huaxian, HUA Rong, LIU Huaping, et al. Self-organizing feature map method for multi-target active perception of unmanned aerial vehicle systems[J]. CAAI transactions on intelligent systems, 2020, 15(3): 609-614
[5] 李昌华, 董鑫, 李智杰. 改进的半监督协同SOM图匹配算法[J]. 计算机工程与设计, 2019, 40(5): 1355-1359
LI Changhua, DONG Xin, LI Zhijie. Improved semi-supervised collaborative SOM graph matching algorithm[J]. Computer engineering and design, 2019, 40(5): 1355-1359
[6] UNDERWOOD K L, RIZZO D M, DEWOOLKAR M M, et al. Analysis of reach-scale sediment process domains in glacially-conditioned catchments using self-organizing maps[J]. Geomorphology, 2021, 382: 107684.
[7] SPASSIANI A C, MASON M S. Application of self-organizing maps to classify the meteorological origin of wind gusts in Australia[J]. Journal of wind engineering and industrial aerodynamics, 2021, 210: 104529.
[8] CHEN Yang, ASHIZAWA N, YEO C K, et al. Multi-scale self-organizing map assisted deep autoencoding Gaussian mixture model for unsupervised intrusion detection[J]. Knowledge-based systems, 2021, 224: 107086.
[9] JAYARATNE M, ALAHAKOON D, DE SILVA D. Unsupervised skill transfer learning for autonomous robots using distributed growing self organizing maps[J]. Robotics and autonomous systems, 2021, 144: 103835.
[10] DONG Bin, WENG Guirong, JIN Ri. Active contour model driven by self organizing maps for image segmentation[J]. Expert systems with applications, 2021, 177: 114948.
[11] 翟永杰, 杨旭, 赵振兵, 等. 融合共现推理的Faster R-CNN输电线路金具检测[J]. 智能系统学报, 2021, 16(2): 237-246
ZHAI Yongjie, YANG Xu, ZHAO Zhenbing, et al. Integrating co-occurrence reasoning for faster R-CNN transmission line fitting detection[J]. CAAI transactions on intelligent systems, 2021, 16(2): 237-246
[12] 饶子昀, 张毅, 刘俊涛, 等. 应用知识图谱的推荐方法与系统[J]. 自动化学报, 2021, 47(9): 2061-2077
RAO Ziyun, ZHANG Yi, LIU Juntao, et al. Recommendation methods and systems using knowledge graph[J]. Acta automatica sinica, 2021, 47(9): 2061-2077
[13] LIU Chenguang, YU Yongli, LI Xingxin, et al. Application of entity relation extraction method under CRF and syntax analysis tree in the construction of military equipment knowledge graph[J]. IEEE access, 2005, 8: 81-88.
[14] YAN Hehua, YANG Jun, WAN Jiafu. KnowIME: a system to construct a knowledge graph for intelligent manufacturing equipment[J]. IEEE access, 2020, 8: 41805-41813.
[15] YU Fang, ZHOU Qing, LU Xiaoshan, et al. A first-order logic framework of major choosing decision making with an uncertain reasoning function[J]. IEEE transactions on systems, man, and cybernetics:systems, 2018, 48(1): 89-98.
[16] XIONG Wenhan, HOANG T, WANG W Y. DeepPath: a reinforcement learning method for knowledge graph reasoning[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2017: 564?573.
[17] WANG Xiang, WANG Dingxian, XU Canran, et al. Explainable reasoning over knowledge graphs for recommendation[EB/OL]. (2018?11?12)[2020?01?01]. https://arxiv.org/abs/1811.04540.
[18] BELLOMARINI L, BENEDETTO D, GOTTLOB G, et al. Vadalog: a modern architecture for automated reasoning with large knowledge graphs[J]. Information systems, 2022, 105: 101528.
[19] ZHANG Rui, HRISTOVSKI D, SCHUTTE D, et al. Drug repurposing for COVID-19 via knowledge graph completion[J]. Journal of biomedical informatics, 2021, 115: 103696.
[20] WANG Qi, JI Yuede, HAO Yongsheng, et al. GRL: Knowledge graph completion with GAN-based reinforcement learning[J]. Knowledge-based systems, 2020, 209: 106421.
[21] 刘烨宸, 李华昱. 领域知识图谱研究综述[J]. 计算机系统应用, 2020, 29(6): 1-12
LIU Yechen, LI Huayu. Survey on domain knowledge graph research[J]. Computer systems & applications, 2020, 29(6): 1-12
[22] 杜会芳, 王昊奋, 史英慧, 等. 知识图谱多跳问答推理研究进展、挑战与展望[J]. 大数据, 2021, 7(3): 60-79
DU Huifang, WANG Haofen, SHI Yinghui, et al. Progress, challenges and research trends of reasoning in multi-hop knowledge graph based question answering[J]. Big data research, 2021, 7(3): 60-79
[23] MELIN P, MONICA J C, SANCHEZ D, et al. Analysis of spatial spread relationships of coronavirus (COVID-19) pandemic in the world using self organizing maps[J]. Chaos, solitons & fractals, 2020, 138: 109917.
[24] 王文广. 知识图谱推理: 现代的方法与应用[J]. 大数据, 2021, 7(3): 42-59
WANG Wenguang. Knowledge graph reasoning: modern methods and applications[J]. Big data research, 2021, 7(3): 42-59
[25] SHEN Fei, LANGARI R, YAN Ruqiang. Transfer between multiple machine plants: a modified fast self-organizing feature map and two-order selective ensemble based fault diagnosis strategy[J]. Measurement, 2020, 151: 107155.
[26] 许曈, 凌有铸, 陈孟元. 一种融合DGSOM神经网络的仿生算法研究[J]. 智能系统学报, 2017, 12(3): 405-412
XU Tong, LING Youzhu, CHEN Mengyuan. A bio-inspired algorithm integrated with DGSOM neural network[J]. CAAI transactions on intelligent systems, 2017, 12(3): 405-412
[27] XU Bo, ZHOU Feng, GATES A M. Multi-objective particle swarm optimization algorithm for the minimum constraint removal problem[J]. International journal of computational intelligence systems, 2020, 13(1): 291-299.
[28] 曹知奥, 汪晋宽, 韩英华, 等. 基于交叉-变异人工蜂群算法的微网优化调度[J]. 控制与决策, 2020, 35(9): 2059-2069
CAO Zhiao, WANG Jinkuan, HAN Yinghua, et al. Crossover-mutation based artificial bee colony algorithm for optimal scheduling of microgrid[J]. Control and decision, 2020, 35(9): 2059-2069
[29] AFOUDI Y, LAZAAR M, AL ACHHAB M. Hybrid recommendation system combined content-based filtering and collaborative prediction using artificial neural network[J]. Simulation modelling practice and theory, 2021, 113: 102375.
相似文献/References:
[1]雷森,史振威,石天阳,等.基于递归神经网络的风暴潮增水预测[J].智能系统学报,2017,12(5):640.[doi:10.11992/tis.201706015]
 LEI Sen,SHI Zhenwei,SHI Tianyang,et al.Prediction of storm surge based on recurrent neural network[J].CAAI Transactions on Intelligent Systems,2017,12():640.[doi:10.11992/tis.201706015]
[2]周杉杉,李文静,乔俊飞.基于自组织递归模糊神经网络的PM2.5浓度预测[J].智能系统学报,2018,13(4):509.[doi:10.11992/tis.201710007]
 ZHOU Shanshan,LI Wenjing,QIAO Junfei.Prediction of PM2.5 concentration based on self-organizing recurrent fuzzy neural network[J].CAAI Transactions on Intelligent Systems,2018,13():509.[doi:10.11992/tis.201710007]
[3]程康明,熊伟丽.一种自训练框架下的三优选半监督回归算法[J].智能系统学报,2020,15(3):568.[doi:10.11992/tis.201905033]
 CHENG Kangming,XIONG Weili.Three-optimal semi-supervised regression algorithm under self-training framework[J].CAAI Transactions on Intelligent Systems,2020,15():568.[doi:10.11992/tis.201905033]
[4]陈新元,谢晟祎,陈庆强,等.结合卷积特征提取和路径语义的知识推理[J].智能系统学报,2021,16(4):729.[doi:10.11992/tis.202008007]
 CHEN Xinyuan,XIE Shengyi,CHEN Qingqiang,et al.Knowledge-based inference on convolutional feature extraction and path semantics[J].CAAI Transactions on Intelligent Systems,2021,16():729.[doi:10.11992/tis.202008007]
[5]曾毓菁,姜勇.一种融入注意力和预测的特征选择SLAM算法[J].智能系统学报,2021,16(6):1039.[doi:10.11992/tis.202010036]
 ZENG Yujing,JIANG Yong.Feature selection simultaneous localization and mapping algorithm incorporating attention and anticipation[J].CAAI Transactions on Intelligent Systems,2021,16():1039.[doi:10.11992/tis.202010036]
[6]刘明华,张强.支持向量机与神经网络相结合的板带凸度预测[J].智能系统学报,2022,17(3):506.[doi:10.11992/tis.202101002]
 LIU Minghua,ZHANG Qiang.Prediction of strip crown based on support vector machine and neural network[J].CAAI Transactions on Intelligent Systems,2022,17():506.[doi:10.11992/tis.202101002]
[7]杜永萍,赵以梁,阎婧雅,等.基于深度学习的机器阅读理解研究综述[J].智能系统学报,2022,17(6):1074.[doi:10.11992/tis.202107024]
 DU Yongping,ZHAO Yiliang,YAN Jingya,et al.Survey of machine reading comprehension based on deep learning[J].CAAI Transactions on Intelligent Systems,2022,17():1074.[doi:10.11992/tis.202107024]
[8]郭一楠,王斌,巩敦卫,等.实体结构与语义融合的多层注意力知识表示学习[J].智能系统学报,2023,18(3):577.[doi:10.11992/tis.202204026]
 GUO Yinan,WANG Bin,GONG Dunwei,et al.Multi-layer attention knowledge representation learning by integrating entity structure with semantics[J].CAAI Transactions on Intelligent Systems,2023,18():577.[doi:10.11992/tis.202204026]
[9]邱成羽,李兵,林世杰,等.放射多组学协同学习预测鼻咽癌自适应放疗触发机制[J].智能系统学报,2024,19(1):58.[doi:10.11992/tis.202304029]
 QIU Chengyu,LI Bing,LAM Saikit,et al.Radioactive multi-omics collaborative learning for adaptive radiation therapy eligibility prediction in nasopharyngeal carcinoma[J].CAAI Transactions on Intelligent Systems,2024,19():58.[doi:10.11992/tis.202304029]

备注/Memo

收稿日期:2021-7-12。
基金项目:国家重点研发计划项目(2018YFB1701903).
作者简介:杨伟凯,硕士研究生,主要研究方向为工艺知识推理、机器学习、工艺能耗优化;王艳,教授,博士生导师,主要研究方向为离散制造能耗网络协同优化。参与国家高技术研究发展计划、重点研发计划等多项。授权发明专利16项,发表学术论文130余篇
通讯作者:王艳.E-mail:wangyan88@jiangnan.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com