[1]王凡超,丁世飞.基于广泛激活深度残差网络的图像超分辨率重建[J].智能系统学报,2022,17(2):440-446.[doi:10.11992/tis.202106023]
 WANG Fanchao,DING Shifei.Image super-resolution reconstruction based on widely activated deep residual networks[J].CAAI Transactions on Intelligent Systems,2022,17(2):440-446.[doi:10.11992/tis.202106023]
点击复制

基于广泛激活深度残差网络的图像超分辨率重建

参考文献/References:
[1] 雷鹏程, 刘丛, 唐坚刚, 等. 分层特征融合注意力网络图像超分辨率重建[J]. 中国图象图形学报, 2020, 25(9): 1773–1786
LEI Pengcheng, LIU Cong, TANG Jiangang, et al. Hierarchical feature fusion attention network for image super-resolution reconstruction[J]. Journal of image and graphics, 2020, 25(9): 1773–1786
[2] HUANG Zhengzhong, CAO Liangcai. Bicubic interpolation and extrapolation iteration method for high resolution digital holographic reconstruction[J]. Optics and lasers in engineering, 2020, 130: 106090.
[3] HAO Sai, DONG Xianghuai. Interpolation-based plane stress anisotropic yield models[J]. International journal of mechanical sciences, 2020, 178: 105612.
[4] 贺璟, 郝晓丽, 吕进来. 梯度插值与可变阈值改进的POCS算法[J]. 中国科技论文, 2017, 12(14): 1655–1658,1684
HE Jing, HAO Xiaoli, Lü Jinlai. POCS algorithm based on gradient interpolation and variable threshold[J]. China sciencepaper, 2017, 12(14): 1655–1658,1684
[5] 白蔚, 杨撒博雅, 刘家瑛, 等. 基于显著性稀疏表示的图像超分辨率算法[J]. 中国科技论文, 2014, 9(1): 103–107
BAI Wei, YANG Saboya, LIU Jiaying, et al. Image super resolution based on salient sparse coding[J]. China sciencepaper, 2014, 9(1): 103–107
[6] DONG Chao, LOY C C, HE Kaiming, et al. Learning a deep convolutional network for image super-resolution[C]//Proceedings of the 13th European Conference on Computer Vision. Zurich, Switzerland, 2014: 184?199.
[7] KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016: 1646?1654.
[8] LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Honolulu, USA, 2017: 136?144.
[9] IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on Machine Learning. Lille, France, 2015: 448-456.
[10] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10)[2021-01-01].https://arxiv.org/abs/1409.1556.
[11] SHI Wenzhe, CABALLERO J, HUSZáR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016: 1874-1883.
[12] LEDIG C, THEIS L, HUSZáR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA, 2017: 4681-4690.
[13] ZHANG Yulun, TIAN Yapeng, KONG Yu, et al. Residual dense network for image super-resolution[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA, 2018: 2472-2481.
[14] YU Jiahui, FAN Yuchen, YANG Jianchao, et al. Wide activation for efficient and accurate image super-resolution[EB/OL]. (2018-12-21)[2021-01-01]. https://arxiv.org/abs/1808.08718v1.
[15] WANG Xintao, YU Ke, WU Shixiang, et al. ESRGAN: enhanced super-resolution generative adversarial networks[C]//Proceedings of the European Conference on Computer Vision. Munich, Germany, 2018: 63?79.
相似文献/References:
[1]张媛媛,霍静,杨婉琪,等.深度信念网络的二代身份证异构人脸核实算法[J].智能系统学报,2015,10(2):193.[doi:10.3969/j.issn.1673-4785.201405060]
 ZHANG Yuanyuan,HUO Jing,YANG Wanqi,et al.A deep belief network-based heterogeneous face verification method for the second-generation identity card[J].CAAI Transactions on Intelligent Systems,2015,10():193.[doi:10.3969/j.issn.1673-4785.201405060]
[2]丁科,谭营.GPU通用计算及其在计算智能领域的应用[J].智能系统学报,2015,10(1):1.[doi:10.3969/j.issn.1673-4785.201403072]
 DING Ke,TAN Ying.A review on general purpose computing on GPUs and its applications in computational intelligence[J].CAAI Transactions on Intelligent Systems,2015,10():1.[doi:10.3969/j.issn.1673-4785.201403072]
[3]马晓,张番栋,封举富.基于深度学习特征的稀疏表示的人脸识别方法[J].智能系统学报,2016,11(3):279.[doi:10.11992/tis.201603026]
 MA Xiao,ZHANG Fandong,FENG Jufu.Sparse representation via deep learning features based face recognition method[J].CAAI Transactions on Intelligent Systems,2016,11():279.[doi:10.11992/tis.201603026]
[4]刘帅师,程曦,郭文燕,等.深度学习方法研究新进展[J].智能系统学报,2016,11(5):567.[doi:10.11992/tis.201511028]
 LIU Shuaishi,CHENG Xi,GUO Wenyan,et al.Progress report on new research in deep learning[J].CAAI Transactions on Intelligent Systems,2016,11():567.[doi:10.11992/tis.201511028]
[5]马世龙,乌尼日其其格,李小平.大数据与深度学习综述[J].智能系统学报,2016,11(6):728.[doi:10.11992/tis.201611021]
 MA Shilong,WUNIRI Qiqige,LI Xiaoping.Deep learning with big data: state of the art and development[J].CAAI Transactions on Intelligent Systems,2016,11():728.[doi:10.11992/tis.201611021]
[6]王亚杰,邱虹坤,吴燕燕,等.计算机博弈的研究与发展[J].智能系统学报,2016,11(6):788.[doi:10.11992/tis.201609006]
 WANG Yajie,QIU Hongkun,WU Yanyan,et al.Research and development of computer games[J].CAAI Transactions on Intelligent Systems,2016,11():788.[doi:10.11992/tis.201609006]
[7]黄心汉.A3I:21世纪科技之光[J].智能系统学报,2016,11(6):835.[doi:10.11992/tis.201605022]
 HUANG Xinhan.A3I: the star of science and technology for the 21st century[J].CAAI Transactions on Intelligent Systems,2016,11():835.[doi:10.11992/tis.201605022]
[8]赵志辉,赵瑞珍,岑翼刚,等.基于稀疏表示与线性回归的图像快速超分辨率重建[J].智能系统学报,2017,12(1):8.[doi:10.11992/tis.201603039]
 ZHAO Zhihui,ZHAO Ruizhen,CEN Yigang,et al.Rapid super-resolution image reconstruction based on sparse representation and linear regression[J].CAAI Transactions on Intelligent Systems,2017,12():8.[doi:10.11992/tis.201603039]
[9]宋婉茹,赵晴晴,陈昌红,等.行人重识别研究综述[J].智能系统学报,2017,12(6):770.[doi:10.11992/tis.201706084]
 SONG Wanru,ZHAO Qingqing,CHEN Changhong,et al.Survey on pedestrian re-identification research[J].CAAI Transactions on Intelligent Systems,2017,12():770.[doi:10.11992/tis.201706084]
[10]杨梦铎,栾咏红,刘文军,等.基于自编码器的特征迁移算法[J].智能系统学报,2017,12(6):894.[doi:10.11992/tis.201706037]
 YANG Mengduo,LUAN Yonghong,LIU Wenjun,et al.Feature transfer algorithm based on an auto-encoder[J].CAAI Transactions on Intelligent Systems,2017,12():894.[doi:10.11992/tis.201706037]

备注/Memo

收稿日期:2021-06-15。
基金项目:国家自然科学基金项目(61976216,61672522)
作者简介:王凡超,硕士研究生,主要研究方向为深度学习、图像超分辨率;丁世飞,教授,博士生导师,CCF杰出会员,第八届吴文俊人工智能科学技术奖获得者,主要研究方向为人工智能与模式识别、机器学习与数据挖掘。主持国家重点基础研究计划课题1项、国家自然科学基金面上项目3项。出版专著5部,发表学术论文200余篇
通讯作者:丁世飞.E-mail:dingsf@cumt.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com