[1]查思明,鲍庆森,骆健,等.自适应标记关联与实例关联诱导的缺失多视图弱标记学习[J].智能系统学报,2022,17(4):670-679.[doi:10.11992/tis.202106017]
 ZHA Siming,BAO Qingsen,LUO Jian,et al.Adaptive label correlation and instance correlation guided incomplete multiview weak label learning[J].CAAI Transactions on Intelligent Systems,2022,17(4):670-679.[doi:10.11992/tis.202106017]
点击复制

自适应标记关联与实例关联诱导的缺失多视图弱标记学习

参考文献/References:
[1] ZHOU Tianyi, TAO Dacheng, WU Xindong. Compressed labeling on distilled labelsets for multi-label learning[J]. Machine learning, 2012, 88(1/2): 69–126.
[2] XU Linli, WANG Zhen, SHEN Zefan, et al. Learning low-rank label correlations for multi-label classification with missing labels[C]//2014 IEEE International Conference on Data Mining. Shenzhen: IEEE, 2014: 1067?1072.
[3] ZHU Yue, KWOK J T, ZHOU Zhihua. Multi-label learning with global and local label correlation[J]. IEEE transactions on knowledge and data engineering, 2018, 30(6): 1081–1094.
[4] ZHANG Minling, ZHOU Zhihua. A review on multi-label learning algorithms[J]. IEEE transactions on knowledge and data engineering, 2014, 26(8): 1819–1837.
[5] BOUTELL M R, LUO Jiebo, SHEN Xipeng, et al. Learning multi-label scene classification[J]. Pattern recognition, 2004, 37(9): 1757–1771.
[6] FüRNKRANZ J, HüLLERMEIER E, LOZA MENCíA E, et al. Multilabel classification via calibrated label ranking[J]. Machine learning, 2008, 73(2): 133–153.
[7] TSOUMAKAS G, VLAHAVAS I. Random k-labelsets: an ensemble method for multilabel classification[M]//Machine Learning: ECML 2007. Heidelberg: Springer Berlin Heidelberg, 2007: 406?417.
[8] ZHANG Jia, LUO Zhiming, LI Candong, et al. Manifold regularized discriminative feature selection for multi-label learning[J]. Pattern recognition, 2019, 95: 136–150.
[9] ZHANG Changqing, YU Ziwei, FU Huazhu, et al. Hybrid noise-oriented multilabel learning[J]. IEEE transactions on cybernetics, 2020, 50(6): 2837–2850.
[10] SUN Yuyin, ZHANG Yin, ZHI Zhihua. Multi-label learning with weak label[C]//Proceedings of the 24th AAAI Conference on Artificial Intelligence. Georgia: AAAI Press, 2010: 593?598.
[11] LI Junbing, ZHANG Changqing, ZHU Pengfei, et al. SPL-MLL: selecting predictable landmarks for multi-label learning[C]//European Conference on Computer Vision. Cham: Springer, 2020: 783?799.
[12] ZHANG Minling, ZHOU Zhihua. ML-KNN: a lazy learning approach to multi-label learning[J]. Pattern recognition, 2007, 40(7): 2038–2048.
[13] CLARE A, KING R D. Knowledge discovery in multi-label phenotype data[M]//Principles of Data Mining and Knowledge Discovery. Heidelberg: Springer Berlin Heidelberg, 2001: 42?53.
[14] GHAMRAWI N, MCCALLUM A. Collective multi-label classification[C]//CIKM ’05: Proceedings of the 14th ACM international conference on Information and knowledge management. New York: ACM, 2005: 195?200.
[15] ZHANG Changqing, YU Ziwei, HU Qinghua, et al. Latent semantic aware multi-view multi-label Classification[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Louisiana: AAAI Press, 2018: 2703?2709.
[16] LIU Meng, LUO Yong, TAO Dacheng, et al. Low-rank multi-view learning in matrix completion for multi-label image classification[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence. Texas: AAAI Press, 2015: 2278?2284.
[17] ZHANG Yongshan, WU Jia, CAI Zhihua, et al. Multi-view multi-label learning with sparse feature selection for image annotation[J]. IEEE transactions on multimedia, 2020, 22(11): 2844–2857.
[18] TAN Qiaoyu, YU Guoxian, DOMENICONI C, et al. Incomplete multi-view weak-label learning[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. Stockholm, Sweden. California: International Joint Conferences on Artificial Intelligence Organization, 2018: 2703?2709.
[19] ZHANG Changqing, CUI Yajie, HAN Zongbo, et al. Deep partial multi-view learning[J]. IEEE transactions on pattern analysis and machine intelligence, 2022, 44(5): 2402–2415.
[20] 张祎, 孔祥维, 王振帆, 等. 基于多视图矩阵分解的聚类分析[J]. 自动化学报, 2018, 44(12): 2160–2169
ZHANG Yi, KONG Xiangwei, WANG Zhenfan, et al. Matrix factorization for multi-view clustering[J]. Acta automatica sinica, 2018, 44(12): 2160–2169
[21] 孙亮, 韩毓璇, 康文婧, 等. 基于生成对抗网络的多视图学习与重构算法[J]. 自动化学报, 2018, 44(5): 819–828
SUN Liang, HAN Yuxuan, KANG Wenjing, et al. Multi-view learning and reconstruction algorithm via generative adversarial networks[J]. Acta automatica sinica, 2018, 44(5): 819–828
[22] XU Chang, TAO Dacheng, XU Chao. Multi-view learning with incomplete views[J]. IEEE transactions on image processing:a publication of the IEEE signal processing society, 2015, 24(12): 5812–5825.
[23] DATTA R, JOSHI D, LI Jia, et al. Image retrieval: ideas, influences, and trends of the new age[J]. ACM computing surveys, 2008, 40(2): 5.
[24] DONG Haochen, LI Yufeng, ZHOU Zhihua. Learning from semi-supervised weak-label data[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Stockholm: International Joint Conferences on Artificial Intelligence Organization, 2018, 32(1).
[25] LUO Dijun, DING C, HUANG Heng, et al. Non-negative Laplacian embedding[C]//2009 Ninth IEEE International Conference on Data Mining. Miami Beach: IEEE, 2009: 337?346.
[26] WANG Hua, HUANG Heng, DING C. Image annotation using multi-label correlated Green’s function[C]//2009 IEEE 12th International Conference on Computer Vision. Kyoto: IEEE, 2009: 2029?2034.
[27] CHUNG F R K, GRAHAM F C. Spectral graph theory [M]//Rhode Island: American Mathematic Society, 1997.
[28] 杨明, 刘先忠. 矩阵论[M]. 武汉: 华中工学院出版社, 2003.
[29] BOUMAL N, MISHRA B, ABSIL P A, et al. Manopt, a Matlab toolbox for optimization on manifolds[J]. Journal of machine learning research, 2014, 15: 1455–1459.
相似文献/References:
[1]刘杨磊,梁吉业,高嘉伟,等.基于Tri-training的半监督多标记学习算法[J].智能系统学报,2013,8(5):439.[doi:10.3969/j.issn.1673-4785.201305033]
 LIU Yanglei,LIANG Jiye,GAO Jiawei,et al.Semi-supervised multi-label learning algorithm based on Tri-training[J].CAAI Transactions on Intelligent Systems,2013,8():439.[doi:10.3969/j.issn.1673-4785.201305033]
[2]杨文元.多标记学习自编码网络无监督维数约简[J].智能系统学报,2018,13(5):808.[doi:10.11992/tis.201804051]
 YANG Wenyuan.Unsupervised dimensionality reduction of multi-label learning via autoencoder networks[J].CAAI Transactions on Intelligent Systems,2018,13():808.[doi:10.11992/tis.201804051]
[3]余鹰,王乐为,吴新念,等.基于改进卷积神经网络的多标记分类算法[J].智能系统学报,2019,14(3):566.[doi:10.11992/tis.201804056]
 YU Ying,WANG Lewei,WU Xinnian,et al.A multi-label classification algorithm based on an improved convolutional neural network[J].CAAI Transactions on Intelligent Systems,2019,14():566.[doi:10.11992/tis.201804056]
[4]王一宾,裴根生,程玉胜.弹性网络核极限学习机的多标记学习算法[J].智能系统学报,2019,14(4):831.[doi:10.11992/tis.201806005]
 WANG Yibin,PEI Gensheng,CHENG Yusheng.Multi-label learning algorithm of an elastic net kernel extreme learning machine[J].CAAI Transactions on Intelligent Systems,2019,14():831.[doi:10.11992/tis.201806005]
[5]黄琴,钱文彬,王映龙,等.代价敏感数据的多标记特征选择算法[J].智能系统学报,2019,14(5):929.[doi:10.11992/tis.201807027]
 HUANG Qin,QIAN Wenbin,WANG Yinglong,et al.Multi-label feature selection algorithm for cost-sensitive data[J].CAAI Transactions on Intelligent Systems,2019,14():929.[doi:10.11992/tis.201807027]
[6]秦天,滕齐发,贾修一.结合局部标记序关系的弱监督标记分布学习[J].智能系统学报,2023,18(1):47.[doi:10.11992/tis.202204018]
 QIN Tian,TENG Qifa,JIA Xiuyi.Weakly supervised label distribution learning by maintaining local label ranking[J].CAAI Transactions on Intelligent Systems,2023,18():47.[doi:10.11992/tis.202204018]
[7]胡军,王海峰.基于加权信息粒化的多标记数据特征选择算法[J].智能系统学报,2023,18(3):619.[doi:10.11992/tis.202111058]
 HU Jun,WANG Haifeng.Feature selection algorithm of multi-labeled data based on weighted information granulation[J].CAAI Transactions on Intelligent Systems,2023,18():619.[doi:10.11992/tis.202111058]

备注/Memo

收稿日期:2021-06-15。
基金项目:国家自然科学基金项目(61872190).
作者简介:查思明,硕士研究生,主要研究方向为机器学习;鲍庆森,硕士研究生,主要研究方向为机器学习;陈蕾,教授,博士生导师,中国计算机学会高级会员,主要研究方向为机器学习、模式识别、医学图像分析。申请发明专利20余项,授权8项,发表学术论文40余篇
通讯作者:陈蕾. E-mail:chenlei@njupt.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com