[1]陈恩红,刘淇,王士进,等.面向智能教育的自适应学习关键技术与应用[J].智能系统学报,2021,16(5):886-898.[doi:10.11992/tis.202105036]
 CHEN Enhong,LIU Qi,WANG Shijin,et al.Key techniques and application of intelligent education oriented adaptive learning[J].CAAI Transactions on Intelligent Systems,2021,16(5):886-898.[doi:10.11992/tis.202105036]
点击复制

面向智能教育的自适应学习关键技术与应用

参考文献/References:
[1] 张志祯, 张玲玲, 李芒. 人工智能教育应用的应然分析:教学自动化的必然与可能[J]. 中国远程教育, 2019(1): 23–35, 92
ZHANG Zhizhen, ZHANG Lingling, LI Mang. A normative analysis of AI in education: the necessity and possibility to automate instruction[J]. Distance education in China, 2019(1): 23–35, 92
[2] 郑庆华, 董博, 钱步月, 等. 智慧教育研究现状与发展趋势[J]. 计算机研究与发展, 2019, 56(1): 209–224
ZHENG Qinghua, DONG Bo, QIAN Buyue, et al. The state of the art and future tendency of smart education[J]. Journal of computer research and development, 2019, 56(1): 209–224
[3] 陈丽, 林世员, 郑勤华. “互联网+”时代中国远程教育的机遇和挑战[J]. 现代远程教育研究, 2016(1): 3–10
CHEN Li, LIN Shiyuan, ZHENG Qinhua. Opportunities and challenges of Chinese distance education in the“Internet+”Era[J]. Modern distance education research, 2016(1): 3–10
[4] 刘淇, 陈恩红, 朱天宇, 等. 面向在线智慧学习的教育数据挖掘技术研究[J]. 模式识别与人工智能, 2018(1): 77–90
LIU Qi, CHEN Enhong, ZHU Tianyu, et al. Research on educational data mining for online intelligent learning[J]. Pattern recognition and artificial intelligence, 2018(1): 77–90
[5] 黄振亚. 面向个性化学习的数据挖掘方法与应用研究[D]. 合肥:中国科学技术大学, 2020.
HUANG Zhenya. Data mining techniques and applications for personalized learning[D]. Hefei: University of Science and Technology of China, 2020.
[6] 朱天宇. 结合认知诊断的方法的学生建模与应用研究[D]. 合肥:中国科学技术大学, 2018.
ZHU Tianyu. Student modeling and application research based on cognitive diagnosis[D]. Hefei: University of Science and Technology of China, 2018.
[7] 刘玉苹. 基于认知诊断的辅助教育技术研究[D]. 合肥:中国科学技术大学, 2016.
LIU Yuping. A study of educational assistive technologies based on cognitive diagnosis theory[D]. Hefei: University of Science and Technology of China, 2016.
[8] 黄仔. 基于多模态学习的试题建模方法与应用研究[D]. 合肥:中国科学技术大学, 2019.
HUANG Zai. Research of exercise modeling and application based on multimodal learning[D]. Hefei: University of Science and Technology of China, 2019.
[9] 吴凡. 面向2030的教育质量: 核心理念与保障模式——基于联合国教科文组织等政策报告的文本分析[J]. 教育研究, 2018, 39(1): 132–141
WU Fan. The core conceptualization and assurance models in education 2030 framework for action——text analysis on policies and reports of UNESCO[J]. Educational research, 2018, 39(1): 132–141
[10] PETERS M E, NEUMANN M, IYYER M, et al. Deep contextualized word representations[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). New Orleans, USA, 2018: 2227–2237.
[11] YIN Yu, LIU Qi, HUANG Zhenya, et al. Quesnet: a unified representation for heterogeneous test questions[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Anchorage, USA, 2019: 1328-1336.
[12] FUCHS L S, FUCHS D, HAMLETT C L, et al. Effects of expert system consultation within curriculum-based measurement, using a reading maze task[J]. Exceptional children, 1992, 58(5): 436-450.
[13] HUANG Wei, CHEN Enhong, LIU Qi, et al. Hierarchical multi-label text classification: an attention-based recurrent network approach[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management. Beijing, China, 2019: 1051-1060.
[14] HUANG Zhenya, LIU Qi, CHEN Enhong, et al. Question difficulty prediction for READING problems in standard tests[C]//Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. San Francisco, USA, 2017: 1352-1359.
[15] HAGE H, AIMERU E. ICE: a system for identification of conflicts in exams[C]//IEEE International Conference on Computer Systems and Applications. Dubai, United Arab Emirates, 2006: 980-987.
[16] TSINAKOS A, KAZANIDIS I. Identification of conflicting questions in the PARES system[J]. International review of research in open and distributed learning, 2012, 13(3): 297–313.
[17] WILLIAMS A E, AGUILAR-ROCA N M, TSAI M, et al. Assessment of learning gains associated with independent exam analysis in introductory biology[J]. CBE-life sciences education, 2011, 10(4): 346–356.
[18] YU Jing, LI Dongmei, HOU Jiajia, et al. Similarity measure of test questions based on ontology and VSM[J]. The open automation and control systems journal, 2014, 6(1): 262–267.
[19] LIU Qi, HUANG Zai, HUANG Zhenya, et al. Finding similar exercises in online education systems[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. London, United Kingdom, 2018: 1821-1830.
[20] MELLENBERGH G J. Item bias and item response theory[J]. International journal of educational research, 1989, 13(2): 127–143.
[21] DE LA TORRE J. DINA model and parameter estimation: A didactic[J]. Journal of educational and behavioral statistics, 2009, 34(1): 115–130.
[22] WANG Fei, LIU Qi, CHEN Enhong, et al. Neural cognitive diagnosis for intelligent education systems[J]. Proceedings of the AAAI conference on artificial intelligence, 2020, 34(4): 6153–6161.
[23] KOREN Y, BELL R, VOLINSKY C. Matrix factorization techniques for recommender systems[J]. Computer, 2009, 42(8): 30–37.
[24] JEWSBURY P A, VAN RIJN P W. IRT and MIRT models for item parameter estimation with multidimensional multistage tests[J]. Journal of educational and behavioral statistics, 2020, 45(4): 383–402.
[25] LIU Qi, WU Runze, CHEN Enhong, et al. Fuzzy cognitive diagnosis for modelling examinee performance[J]. ACM transactions on intelligent systems and technology (TIST), 2018, 9(4): 48.
[26] WU Runze, XU Guandong, CHEN Enhong, et al. Knowledge or gaming?: cognitive modelling based on multiple-attempt response[C]//Proceedings of the 26th International Conference on World Wide Web Companion (WWW’2017 Companion). Perth, Australia, 2017: 321?329.
[27] PIECH C, BASSEN J, HUANG J, et al. Deep knowledge tracing[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal, Canada, 2015: 505-513.
[28] LIU Qi, HUANG Zhenya, YIN Yu, et al. EKT: exercise-aware knowledge tracing for student performance prediction[J]. IEEE transactions on knowledge and data engineering, 2021, 33(1): 100–115.
[29] HUANG Zhenya, LIU Qi, CHEN Yuying, et al. Learning or forgetting? A dynamic approach for tracking the knowledge proficiency of students[J]. ACM transactions on information systems, 2020, 38(2): 19.
[30] LIU Yuping, LIU Qi, WU Runze, et al. Collaborative learning team formation: a cognitive modeling perspective[C]//Proceedings of the 21st International Conference on Database Systems for Advanced Applications. Dallas, Texas, USA, 2016: 383-400.
[31] HUANG Zhenya, LIU Qi, ZHAI Chengxiang, et al. Exploring multi-objective exercise recommendations in online education systems[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management. Beijing, China, 2019: 1261-1270.
[32] LIU Qi, TONG Shiwei, LIU Chuanren, et al. Exploiting cognitive structure for adaptive learning[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Anchorage, USA, 2019: 627-635.
相似文献/References:
[1]尹宝才,张超辉,胡永利,等.基于图嵌入的自适应多视降维方法[J].智能系统学报,2021,16(5):963.[doi:10.11992/tis.202105021]
 YIN Baocai,ZHANG Chaohui,HU Yongli,et al.An adaptive multi-view dimensionality reduction method based on graph embedding[J].CAAI Transactions on Intelligent Systems,2021,16():963.[doi:10.11992/tis.202105021]

备注/Memo

收稿日期:2021-05-25。
基金项目:国家自然科学基金项目(61922073,U20A20229,61727809)
作者简介:陈恩红,教授,博士生导师,IEEE高级会员、CAAI会士、CCF会士、大数据专家委员会副主任,主要研究方向为机器学习与数据挖掘、社会网络、个性化推荐。国家自然科学基金重大科研仪器研制项目、联合基金重点项目、国家863计划、科技部重点研发计划课题等多项。发表学术论文150余篇;刘淇,教授,博士生导师,主要研究方向为数据挖掘与知识发现、机器学习方法及其应用、教育大数据分析。入选中国科协“青年人才托举工程”、CCF青年人才托举计划(2017年)、微软亚洲研究院青年学者“铸星计划”、CCF-Intel青年学者提升计划等。主持国家基金面上项目,科技部重点研发计划课题等多项。发表学术论文80余篇;王士进,高级工程师,主要研究方向为人工智能、模式识别、智能教育系统。主持和参与863计划重点项目、工信部电子信息产业发展基金项目等多项,获授权专利和软件著作权10余项。发表学术论文30余篇。
通讯作者:刘淇.E-mail:qiliuql@ustc.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com