[1]许柏祥,刘丽,邱桃荣.面向近重复文本图像检索的三分支孪生网络[J].智能系统学报,2022,17(3):515-522.[doi:10.11992/tis.202105018]
 XU Boxiang,LIU Li,QIU Taorong.Near-duplicate document image retrieval based on three-stream convolutional Siamese network[J].CAAI Transactions on Intelligent Systems,2022,17(3):515-522.[doi:10.11992/tis.202105018]
点击复制

面向近重复文本图像检索的三分支孪生网络

参考文献/References:
[1] 方涛, 陈志国, 傅毅. 神经网络多层特征信息融合的人脸识别方法[J]. 智能系统学报, 2021, 16(2): 279–285
FANG Tao, CHEN Zhiguo, FU Yi. Face recognition method based on neural network multi-layer feature information fusion[J]. CAAI transactions on intelligent systems, 2021, 16(2): 279–285
[2] WANG Zi, LI Chengcheng, WANG Xiangyang. Convolutional neural network pruning with structural redundancy reduction[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville: IEEE, 2021: 14913–14922.
[3] SPITZ L. Duplicate document detection[C]//Proceedings of Document Recognition IV. San Jose, USA, 1997: 88–94.
[4] HULL J J. Document image matching and retrieval with multiple distortion-invariant descriptors[J].Proceedings of the international workshop on document analysis systems, 1994: 379–396.
[5] NAKAI T, KISE K, IWAMURA M. Real-time retrieval for images of documents in various languages using a web camera[C]//2009 10th International Conference on Document Analysis and Recognition. Barcelona: IEEE, 2009: 146–150.
[6] MORALEDA J. Large scalability in document image matching using text retrieval[J]. Pattern recognition letters, 2012, 33(7): 863–871.
[7] LIU Li, LU Yue, SUEN C Y, et al. Modeling local word spatial configurations for near duplicate document image retrieval[C]//2013 12th International Conference on Document Analysis and Recognition. Washington: IEEE, 2013: 235–239.
[8] LIU Li, LU Yue, SUEN C Y. Near-duplicate document image matching: a graphical perspective[J]. Pattern recognition, 2014, 47(4): 1653–1663.
[9] LIU Li, LU Yue, SUEN C Y. Document image matching using probabilistic graphical models[C]//Proceedings of the 21st International Conference on Pattern Recognition. Tsukuba, Japan, 2012: 637–640.
[10] BELLAVIA F, COLOMBO C. Is there anything new to say about SIFT matching?[J]. International journal of computer vision, 2020, 128(7): 1847–1866.
[11] VITALADEVUNI S, CHOI F, PRASAD R, et al. Detecting near-duplicate document images using interest point matching[C]//Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012). Tsukuba: IEEE, 2012: 347–350.
[12] ROYER E, BOUCHARA F. Guiding text image keypoints extraction through layout analysis[C]//2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR). Kyoto: IEEE, 2017: 9–14.
[13] SUN Yanan, XUE Bing, ZHANG Mengjie, et al. Automatically designing CNN architectures using the genetic algorithm for image classification[J]. IEEE transactions on cybernetics, 2020, 50(9): 3840–3854.
[14] JI Yuzhu, ZHANG Haijun, ZHANG Zhao, et al. CNN-based encoder-decoder networks for salient object detection: a comprehensive review and recent advances[J]. Information sciences, 2021, 546: 835–857.
[15] BABENKO A, SLESAREV A, CHIGORIN A, et al. Neural codes for image retrieval[C]//European Conference on Computer Vision. Cham:Springer, 2014: 584–599.
[16] BABENKO A, LEMPITSKY V. Aggregating deep convolutional features for image retrieval[C]//Proceedings of International Conference on Computer Vision. Santiago: IEEE, 2015: 1269–1277.
[17] MIN Weiqing, MEI Shuhuan, LI Zhou, et al. A two-stage triplet network training framework for image retrieval[J]. IEEE transactions on multimedia, 2020, 22(12): 3128–3138.
[18] HUSAIN S S, ONG E J, BOBER M. ACTNET: end-to-end learning of feature activations and multi-stream aggregation for effective instance image retrieval[J]. International journal of computer vision, 2021, 129(5): 1432–1450.
[19] GORDO A, ALMAZáN J, REVAUD J, et al. End-to-end learning of deep visual representations for image retrieval[J]. International journal of computer vision, 2017, 124(2): 237–254.
[20] TOLIAS G, SICRE R, JéGOU H. Particular object retrieval with integral max-pooling of CNN activations[EB/OL]//(2015–11–18)[2021–05–13]https://arxiv.org/abs/1511.05879.
[21] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].(2014–09–4)[2021–05–13]https://arxiv.org/abs/1409.1556.
[22] ZHANG Shengdong, NEZHADARYA E, FASHANDI H, et al. Stochastic whitening batch normalization[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville: IEEE, 2021: 10978–10987.
[23] LIU Guanghai, YANG Jingyu. Deep-seated features histogram: a novel image retrieval method[J]. Pattern recognition, 2021, 116: 107926.
[24] TAKEDA K, KISE K, IWAMURA M. Real-time document image retrieval on a smartphone[C]//2012 10th IAPR International Workshop on Document Analysis Systems. Gold Coast: IEEE, 2012: 225–229.
[25] HARLEY A W, UFKES A, DERPANIS K G. Evaluation of deep convolutional nets for document image classification and retrieval[C]//2015 13th International Conference on Document Analysis and Recognition (ICDAR). Tunis: IEEE, 2015: 991–995.
相似文献/References:
[1]辛雨璇,闫子飞.基于手绘草图的图像检索技术研究进展[J].智能系统学报,2015,10(2):167.[doi:10.3969/j.issn.1673-4785.201401045]
 XIN Yuxuan,YAN Zifei.Research progress of image retrieval based on hand-drawn sketches[J].CAAI Transactions on Intelligent Systems,2015,10():167.[doi:10.3969/j.issn.1673-4785.201401045]
[2]陈阳,董肖莉,李卫军,等.基于仿生形象思维方法的图像检索算法的改进[J].智能系统学报,2015,10(2):209.[doi:10.3969/j.issn.1673-4785.201411022]
 CHEN Yang,DONG Xiaoli,LI Weijun,et al.Improvement of an image retrieval algorithm based on biomimetic imaginal thinking[J].CAAI Transactions on Intelligent Systems,2015,10():209.[doi:10.3969/j.issn.1673-4785.201411022]
[3]龚震霆,陈光喜,任夏荔,等.基于卷积神经网络和哈希编码的图像检索方法[J].智能系统学报,2016,11(3):391.[doi:10.11992/tis.201603028]
 GONG Zhenting,CHEN Guangxi,REN Xiali,et al.An image retrieval method based on a convolutional neural network and hash coding[J].CAAI Transactions on Intelligent Systems,2016,11():391.[doi:10.11992/tis.201603028]
[4]杨晓兰,强彦,赵涓涓,等.基于医学征象和卷积神经网络的肺结节CT图像哈希检索[J].智能系统学报,2017,12(6):857.[doi:10.11992/tis.201706035]
 YANG Xiaolan,QIANG Yan,ZHAO Juanjuan,et al.Hashing retrieval for CT images of pulmonary nodules based on medical signs and convolutional neural networks[J].CAAI Transactions on Intelligent Systems,2017,12():857.[doi:10.11992/tis.201706035]
[5]阿丽亚·巴吐尔,努尔毕亚·亚地卡尔,吾尔尼沙·买买提,等.改进SURF特征的维吾尔文复杂文档图像匹配检索[J].智能系统学报,2019,14(2):296.[doi:10.11992/tis.201709014]
 ALIYA Batur,NURBIYA Yadikar,HORNISA Mamat,et al.Complex Uyghur document image matching and retrieval based on modified SURF feature[J].CAAI Transactions on Intelligent Systems,2019,14():296.[doi:10.11992/tis.201709014]

备注/Memo

收稿日期:2021-05-13。
基金项目:国家自然科学基金青年项目(61603256).
作者简介:许柏祥,硕士研究生,主要研究方向为文本图像分析与识别、深度学习;刘丽,讲师,博士,主要研究方向为文本图像分析与识别、机器视觉、深度学习。主持完成国家自然科学基金项目1项。发表学术论文21篇;邱桃荣,教授,博士,主要研究方向为模式识别与人工智能、机器学习与脑电信号处理和应用。主持完成国家级项目2项、省级项目6项。发表学术论文39篇
通讯作者:刘丽.E-mail:liuli_033@163.com

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com