[1]周阳阳,钱文彬,王映龙,等.面向混合数据的代价敏感三支决策边界域分类方法[J].智能系统学报,2022,17(2):411-419.[doi:10.11992/tis.202012048]
ZHOU Yangyang,QIAN Wenbin,WANG Yinglong,et al.Classification method of cost-sensitive three-way decision boundary region for hybrid data[J].CAAI Transactions on Intelligent Systems,2022,17(2):411-419.[doi:10.11992/tis.202012048]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
17
期数:
2022年第2期
页码:
411-419
栏目:
学术论文—人工智能基础
出版日期:
2022-03-05
- Title:
-
Classification method of cost-sensitive three-way decision boundary region for hybrid data
- 作者:
-
周阳阳1, 钱文彬1,2, 王映龙1, 彭莉莎3, 曾武序1
-
1. 江西农业大学 计算机与信息工程学院,江西 南昌 330045;
2. 江西农业大学 软件学院,江西 南昌 330045;
3. 南京大学 工程管理学院,江苏 南京 210046
- Author(s):
-
ZHOU Yangyang1, QIAN Wenbin1,2, WANG Yinglong1, PENG Lisha3, ZENG Wuxu1
-
1. School of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang 330045, China;
2. School of Software, Jiangxi Agricultural University, Nanchang 330045, China;
3. School of Engineering Management, Nanjing University, Nanjing 210046, China
-
- 关键词:
-
三支决策; 粒计算; 代价敏感; 混合数据; 正域约简; 边界域样本处理; 粗糙集; 核属性
- Keywords:
-
three-way decisions; granular computing; cost sensitive; hybrid data; positive domain reduction; boundary region sample processing; rough set; core attribute
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.202012048
- 摘要:
-
针对现有三支决策模型的研究对象多为单一性数据的决策系统,对于混合数据边界域样本处理的研究相对较少,本文面向混合数据提出了基于核属性的代价敏感三支决策边界域分类方法。该方法基于正域约简计算混合邻域决策系统的核属性集,在此基础上计算混合邻域类,并利用三支决策规则分别将对象划分到各决策类的正域、边界域和负域;提出了一种基于代价敏感学习的三支决策边界域分类方法,并构造了误分类代价的计算方法,以此划分边界域中的对象。通过对UCI上的10个数据集进行实验对比与分析,进一步验证了本文方法,为处理边界域样本提供了一种可行有效的方法。
- Abstract:
-
The research objects of existing three-way decisions models are mostly decision-making systems with single data. Relatively few studies on the boundary region sample processing of mixed data have been conducted. To address this issue, a classification method of a cost-sensitive three-way decision boundary region based on core attributes for hybrid data is proposed in this study. This method computes the core attribute set of the hybrid neighborhood decision system based on positive domain reduction. On this basis, the hybrid neighborhood class is calculated, and the objects are divided into the positive, boundary, and negative regions of each decision-making class through three-way decision rules. The classification method of the three-way decision boundary region based on cost-sensitive learning is proposed. Then, a calculation method of the misclassification cost is constructed to divide the objects in the boundary region. Experiments and analyses are performed on 10 datasets of UCI, which show the feasibility and the effectiveness of the proposed method for the processing of boundary region samples.
备注/Memo
收稿日期:2020-12-28。
基金项目:国家重点研发计划项目(2020YFD1100605);国家自然科学基金项目(61966016);江西省自然科学基金项目(20192BAB207018);江西省研究生创新专项基金项目(YC2020-S236)
作者简介:周阳阳,硕士研究生,主要研究方向为粒计算与知识发现;钱文彬,副教授,博士,主要研究方向为知识发现与机器学习。主持国家自然科学基金项目2项、江西省自然科学基金项目2项。发表学术论文30余篇;王映龙,教授,博士,主要研究方向为知识发现与数据挖掘。参与国家自然科学基金项目2项,主持江西省自然科学基金项目3项。发表学术论文20余篇
通讯作者:钱文彬.E-mail:qianwenbin1027@126.com
更新日期/Last Update:
1900-01-01