[1]赵文清,杨盼盼.双向特征融合与注意力机制结合的目标检测[J].智能系统学报,2021,16(6):1098-1105.[doi:10.11992/tis.202012029]
 ZHAO Wenqing,YANG Panpan.Target detection based on bidirectional feature fusion and an attention mechanism[J].CAAI Transactions on Intelligent Systems,2021,16(6):1098-1105.[doi:10.11992/tis.202012029]
点击复制

双向特征融合与注意力机制结合的目标检测

参考文献/References:
[1] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA, 2014: 580-587.
[2] UIJLINGS J R R, VAN DE SANDE K E A, GEVERS T, et al. Selective search for object recognition[J]. International journal of computer vision, 2013, 104(2): 154-171.
[3] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 37(9): 1904-1916.
[4] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision. Santiago, Chile, 2015: 1440-1448.
[5] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137-1149.
[6] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016: 779-788.
[7] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA, 2017: 6517-6525.
[8] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision. Amsterdam, The Netherland, 2016: 21-37.
[9] FU Chengyang, LIU Wei, RANGA A, et al. DSSD: deconvolutional single shot detector[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hawaii, USA, 2017: 2881-2890.
[10] SINGH B, DAVIS L S. An analysis of scale invariance in object detection-SNIP[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA, 2018: 3578-3587.
[11] 温静, 李雨萌. 基于多尺度反卷积深度学习的显著性检测[J]. 计算机科学, 2020, 47(11): 179-185
WEN Jing, LI Yumeng. Salient object detection based on multi-scale deconvolution deep learning[J]. Computer science, 2020, 47(11): 179-185
[12] LI Jianan, LIANG Xiaodan, WEI Yunchao, et al. Perceptual generative adversarial networks for small object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA, 2017: 1951-1959.
[13] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal, Canada, 2014: 2672-2680.
[14] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA, 2017: 936-944.
[15] 刘涛, 汪西莉. 采用卷积核金字塔和空洞卷积的单阶段目标检测[J]. 中国图象图形学报, 2020, 25(1): 102-112
LIU Tao, WANG Xili. Single-stage object detection using filter pyramid and atrous convolution[J]. Journal of image and graphics, 2020, 25(1): 102-112
[16] 陈景明, 金杰, 王伟锋. 基于特征金字塔网络的改进算法[J]. 激光与光电子学进展, 2019, 56(21): 211505
CHEN Jingming, JIN Jie, WANG Weifeng. Improved algorithm based on feature pyramid networks[J]. Laser & optoelectronics progress, 2019, 56(21): 211505
[17] 张涛, 张乐. 一种基于多尺度特征融合的目标检测算法[J]. 激光与光电子学进展, 2021, 58(2): 0215003
ZHANG Tao, ZHANG Le. Multiscale feature fusion-based object detection algorithm[J]. Laser & optoelectronics progress, 2021, 58(2): 0215003
[18] 和超, 张印辉, 何自芬. 多尺度特征融合工件目标语义分割[J]. 中国图象图形学报, 2020, 25(3): 476-485
HE Chao, ZHANG Yinhui, HE Zifen. Semantic segmentation of workpiece target based on multiscale feature fusion[J]. Journal of image and graphics, 2020, 25(3): 476-485
[19] 鞠默然, 罗江宁, 王仲博, 等. 融合注意力机制的多尺度目标检测算法[J]. 光学学报, 2020, 40(13): 1315002
JU Moran, LUO Jiangning, WANG Zhongbo, et al. Multi-scale target detection algorithm based on attention mechanism[J]. Acta optica sinica, 2020, 40(13): 1315002
[20] 张筱晗, 姚力波, 吕亚飞, 等. 双向特征融合的数据自适应SAR图像舰船目标检测模型[J]. 中国图象图形学报, 2020, 25(9): 1943-1952
ZHANG Xiaohan, YAO Libo, LV Yafei, et al. Data-adaptive single-shot ship detector with a bidirectional feature fusion module for SAR images[J]. Journal of image and graphics, 2020, 25(9): 1943-1952
[21] 高杨, 肖迪. 基于多层特征融合的小目标检测算法[J]. 计算机工程与设计, 2020, 41(7): 1905-1909
GAO Yang, XIAO Di. Small object detection algorithm based on multi-feature fusion[J]. Computer engineering and design, 2020, 41(7): 1905-1909
[22] 杨锐, 张宝华, 张艳月, 等. 基于深度特征自适应融合的运动目标跟踪算法[J]. 激光与光电子学进展, 2020, 57(18): 181501
YANG Rui, ZHANG Baohua, ZHANG Yanyue, et al. Moving object tracking algorithm based on depth feature adaptive fusion[J]. Laser & optoelectronics progress, 2020, 57(18): 181501
[23] 赵文清, 程幸福, 赵振兵, 等. 注意力机制和Faster RCNN相结合的绝缘子识别[J]. 智能系统学报, 2020, 15(1): 92-98
ZHAO Wenqing, CHENG Xingfu, ZHAO Zhenbing, et al. Insulator recognition based on attention mechanism and faster RCNN[J]. CAAI transactions on intelligent systems, 2020, 15(1): 92-98
[24] 徐诚极, 王晓峰, 杨亚东. Attention-YOLO: 引入注意力机制的YOLO检测算法[J]. 计算机工程与应用, 2019, 55(6): 13-23
XU Chengji, WANG Xiaofeng, YANG yadong. Attention-YOLO: YOLO detection algorithm that introduces attention mechanism[J]. Computer engineering and applications, 2019, 55(6): 13-23
[25] 单义, 杨金福, 武随烁, 等. 基于跳跃连接金字塔模型的小目标检测[J]. 智能系统学报, 2019, 14(6): 1144-1151
SHAN Yi, YANG Jinfu, WU Suishuo, et al. Skip feature pyramid network with a global receptive field for small object detection[J]. CAAI transactions on intelligent systems, 2019, 14(6): 1144-1151
相似文献/References:
[1]赵文清,孔子旭,赵振兵.隔级融合特征金字塔与CornerNet相结合的小目标检测[J].智能系统学报,2021,16(1):108.[doi:10.11992/tis.202004033]
 ZHAO Wenqing,KONG Zixu,ZHAO Zhenbing.Small target detection based on a combination of feature pyramid and CornerNet[J].CAAI Transactions on Intelligent Systems,2021,16():108.[doi:10.11992/tis.202004033]
[2]张铭泉,张泽恩,曹锦纲,等.结合Segformer与增强特征金字塔的文本检测方法[J].智能系统学报,2024,19(5):1111.[doi:10.11992/tis.202301013]
 ZHANG Mingquan,ZHANG Zeen,CAO Jingang,et al.Text detection method combining Segformer with an enhanced feature pyramid[J].CAAI Transactions on Intelligent Systems,2024,19():1111.[doi:10.11992/tis.202301013]
[3]曲海成,李瑞柯,王蒙,等.基于特征重用和膨胀卷积的遥感图像舰船检测[J].智能系统学报,2024,19(5):1298.[doi:10.11992/tis.202304002]
 QU Haicheng,LI Ruike,WANG Meng,et al.Ship detection in remote sensing images via feature reuse and dilated convolution[J].CAAI Transactions on Intelligent Systems,2024,19():1298.[doi:10.11992/tis.202304002]

备注/Memo

收稿日期:2020-12-17。
基金项目:河北省自然科学基金项目(F2021502013);中央高校基本科研业务费面上项目(2020MS153,2021PT018)
作者简介:赵文清,教授,博士,主要研究方向为人工智能与图像处理。获河北省科技进步二等奖、三等奖各1项。发表学术论文50余篇;杨盼盼,硕士研究生,主要研究方向为深度学习和目标检测
通讯作者:赵文清.E-mail:zhaowenqing@ncepu.edu.cn

更新日期/Last Update: 2021-12-25
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com